Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrel | Unicode version |
Description: A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ssrel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3136 | . . 3 | |
2 | 1 | alrimivv 1863 | . 2 |
3 | eleq1 2229 | . . . . . . . . . . 11 | |
4 | eleq1 2229 | . . . . . . . . . . 11 | |
5 | 3, 4 | imbi12d 233 | . . . . . . . . . 10 |
6 | 5 | biimprcd 159 | . . . . . . . . 9 |
7 | 6 | 2alimi 1444 | . . . . . . . 8 |
8 | 19.23vv 1872 | . . . . . . . 8 | |
9 | 7, 8 | sylib 121 | . . . . . . 7 |
10 | 9 | com23 78 | . . . . . 6 |
11 | 10 | a2d 26 | . . . . 5 |
12 | 11 | alimdv 1867 | . . . 4 |
13 | df-rel 4611 | . . . . 5 | |
14 | dfss2 3131 | . . . . 5 | |
15 | elvv 4666 | . . . . . . 7 | |
16 | 15 | imbi2i 225 | . . . . . 6 |
17 | 16 | albii 1458 | . . . . 5 |
18 | 13, 14, 17 | 3bitri 205 | . . . 4 |
19 | dfss2 3131 | . . . 4 | |
20 | 12, 18, 19 | 3imtr4g 204 | . . 3 |
21 | 20 | com12 30 | . 2 |
22 | 2, 21 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 wceq 1343 wex 1480 wcel 2136 cvv 2726 wss 3116 cop 3579 cxp 4602 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 df-rel 4611 |
This theorem is referenced by: eqrel 4693 relssi 4695 relssdv 4696 cotr 4985 cnvsym 4987 intasym 4988 intirr 4990 codir 4992 qfto 4993 |
Copyright terms: Public domain | W3C validator |