| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrel | Unicode version | ||
| Description: A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ssrel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3186 |
. . 3
| |
| 2 | 1 | alrimivv 1897 |
. 2
|
| 3 | eleq1 2267 |
. . . . . . . . . . 11
| |
| 4 | eleq1 2267 |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | imbi12d 234 |
. . . . . . . . . 10
|
| 6 | 5 | biimprcd 160 |
. . . . . . . . 9
|
| 7 | 6 | 2alimi 1478 |
. . . . . . . 8
|
| 8 | 19.23vv 1906 |
. . . . . . . 8
| |
| 9 | 7, 8 | sylib 122 |
. . . . . . 7
|
| 10 | 9 | com23 78 |
. . . . . 6
|
| 11 | 10 | a2d 26 |
. . . . 5
|
| 12 | 11 | alimdv 1901 |
. . . 4
|
| 13 | df-rel 4681 |
. . . . 5
| |
| 14 | ssalel 3180 |
. . . . 5
| |
| 15 | elvv 4736 |
. . . . . . 7
| |
| 16 | 15 | imbi2i 226 |
. . . . . 6
|
| 17 | 16 | albii 1492 |
. . . . 5
|
| 18 | 13, 14, 17 | 3bitri 206 |
. . . 4
|
| 19 | ssalel 3180 |
. . . 4
| |
| 20 | 12, 18, 19 | 3imtr4g 205 |
. . 3
|
| 21 | 20 | com12 30 |
. 2
|
| 22 | 2, 21 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-opab 4105 df-xp 4680 df-rel 4681 |
| This theorem is referenced by: eqrel 4763 relssi 4765 relssdv 4766 cotr 5063 cnvsym 5065 intasym 5066 intirr 5068 codir 5070 qfto 5071 |
| Copyright terms: Public domain | W3C validator |