| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssrel | Unicode version | ||
| Description: A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| ssrel | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssel 3177 | 
. . 3
 | |
| 2 | 1 | alrimivv 1889 | 
. 2
 | 
| 3 | eleq1 2259 | 
. . . . . . . . . . 11
 | |
| 4 | eleq1 2259 | 
. . . . . . . . . . 11
 | |
| 5 | 3, 4 | imbi12d 234 | 
. . . . . . . . . 10
 | 
| 6 | 5 | biimprcd 160 | 
. . . . . . . . 9
 | 
| 7 | 6 | 2alimi 1470 | 
. . . . . . . 8
 | 
| 8 | 19.23vv 1898 | 
. . . . . . . 8
 | |
| 9 | 7, 8 | sylib 122 | 
. . . . . . 7
 | 
| 10 | 9 | com23 78 | 
. . . . . 6
 | 
| 11 | 10 | a2d 26 | 
. . . . 5
 | 
| 12 | 11 | alimdv 1893 | 
. . . 4
 | 
| 13 | df-rel 4670 | 
. . . . 5
 | |
| 14 | dfss2 3172 | 
. . . . 5
 | |
| 15 | elvv 4725 | 
. . . . . . 7
 | |
| 16 | 15 | imbi2i 226 | 
. . . . . 6
 | 
| 17 | 16 | albii 1484 | 
. . . . 5
 | 
| 18 | 13, 14, 17 | 3bitri 206 | 
. . . 4
 | 
| 19 | dfss2 3172 | 
. . . 4
 | |
| 20 | 12, 18, 19 | 3imtr4g 205 | 
. . 3
 | 
| 21 | 20 | com12 30 | 
. 2
 | 
| 22 | 2, 21 | impbid2 143 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-xp 4669 df-rel 4670 | 
| This theorem is referenced by: eqrel 4752 relssi 4754 relssdv 4755 cotr 5051 cnvsym 5053 intasym 5054 intirr 5056 codir 5058 qfto 5059 | 
| Copyright terms: Public domain | W3C validator |