ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabt Unicode version

Theorem opelopabt 4264
Description: Closed theorem form of opelopab 4273. (Contributed by NM, 19-Feb-2013.)
Assertion
Ref Expression
opelopabt  |-  ( ( A. x A. y
( x  =  A  ->  ( ph  <->  ps )
)  /\  A. x A. y ( y  =  B  ->  ( ps  <->  ch ) )  /\  ( A  e.  V  /\  B  e.  W )
)  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph }  <->  ch )
)
Distinct variable groups:    x, y, A   
x, B, y    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    V( x, y)    W( x, y)

Proof of Theorem opelopabt
StepHypRef Expression
1 elopab 4260 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) )
2 19.26-2 1482 . . . . 5  |-  ( A. x A. y ( ( x  =  A  -> 
( ph  <->  ps ) )  /\  ( y  =  B  ->  ( ps  <->  ch )
) )  <->  ( A. x A. y ( x  =  A  ->  ( ph 
<->  ps ) )  /\  A. x A. y ( y  =  B  -> 
( ps  <->  ch )
) ) )
3 anim12 344 . . . . . . 7  |-  ( ( ( x  =  A  ->  ( ph  <->  ps )
)  /\  ( y  =  B  ->  ( ps  <->  ch ) ) )  -> 
( ( x  =  A  /\  y  =  B )  ->  (
( ph  <->  ps )  /\  ( ps 
<->  ch ) ) ) )
4 bitr 472 . . . . . . 7  |-  ( ( ( ph  <->  ps )  /\  ( ps  <->  ch )
)  ->  ( ph  <->  ch ) )
53, 4syl6 33 . . . . . 6  |-  ( ( ( x  =  A  ->  ( ph  <->  ps )
)  /\  ( y  =  B  ->  ( ps  <->  ch ) ) )  -> 
( ( x  =  A  /\  y  =  B )  ->  ( ph 
<->  ch ) ) )
652alimi 1456 . . . . 5  |-  ( A. x A. y ( ( x  =  A  -> 
( ph  <->  ps ) )  /\  ( y  =  B  ->  ( ps  <->  ch )
) )  ->  A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ( ph 
<->  ch ) ) )
72, 6sylbir 135 . . . 4  |-  ( ( A. x A. y
( x  =  A  ->  ( ph  <->  ps )
)  /\  A. x A. y ( y  =  B  ->  ( ps  <->  ch ) ) )  ->  A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ch ) ) )
8 copsex2t 4247 . . . 4  |-  ( ( A. x A. y
( ( x  =  A  /\  y  =  B )  ->  ( ph 
<->  ch ) )  /\  ( A  e.  V  /\  B  e.  W
) )  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  ph )  <->  ch )
)
97, 8sylan 283 . . 3  |-  ( ( ( A. x A. y ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x A. y ( y  =  B  ->  ( ps 
<->  ch ) ) )  /\  ( A  e.  V  /\  B  e.  W ) )  -> 
( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ch ) )
1093impa 1194 . 2  |-  ( ( A. x A. y
( x  =  A  ->  ( ph  <->  ps )
)  /\  A. x A. y ( y  =  B  ->  ( ps  <->  ch ) )  /\  ( A  e.  V  /\  B  e.  W )
)  ->  ( E. x E. y ( <. A ,  B >.  = 
<. x ,  y >.  /\  ph )  <->  ch )
)
111, 10bitrid 192 1  |-  ( ( A. x A. y
( x  =  A  ->  ( ph  <->  ps )
)  /\  A. x A. y ( y  =  B  ->  ( ps  <->  ch ) )  /\  ( A  e.  V  /\  B  e.  W )
)  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph }  <->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978   A.wal 1351    = wceq 1353   E.wex 1492    e. wcel 2148   <.cop 3597   {copab 4065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator