| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euind | Unicode version | ||
| Description: Existential uniqueness via an indirect equality. (Contributed by NM, 11-Oct-2010.) |
| Ref | Expression |
|---|---|
| euind.1 |
|
| euind.2 |
|
| euind.3 |
|
| Ref | Expression |
|---|---|
| euind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euind.2 |
. . . . . 6
| |
| 2 | 1 | cbvexv 1933 |
. . . . 5
|
| 3 | euind.1 |
. . . . . . . . 9
| |
| 4 | 3 | isseti 2771 |
. . . . . . . 8
|
| 5 | 4 | biantrur 303 |
. . . . . . 7
|
| 6 | 5 | exbii 1619 |
. . . . . 6
|
| 7 | 19.41v 1917 |
. . . . . . 7
| |
| 8 | 7 | exbii 1619 |
. . . . . 6
|
| 9 | excom 1678 |
. . . . . 6
| |
| 10 | 6, 8, 9 | 3bitr2i 208 |
. . . . 5
|
| 11 | 2, 10 | bitri 184 |
. . . 4
|
| 12 | eqeq2 2206 |
. . . . . . . . 9
| |
| 13 | 12 | imim2i 12 |
. . . . . . . 8
|
| 14 | biimpr 130 |
. . . . . . . . . 10
| |
| 15 | 14 | imim2i 12 |
. . . . . . . . 9
|
| 16 | an31 564 |
. . . . . . . . . . 11
| |
| 17 | 16 | imbi1i 238 |
. . . . . . . . . 10
|
| 18 | impexp 263 |
. . . . . . . . . 10
| |
| 19 | impexp 263 |
. . . . . . . . . 10
| |
| 20 | 17, 18, 19 | 3bitr3i 210 |
. . . . . . . . 9
|
| 21 | 15, 20 | sylib 122 |
. . . . . . . 8
|
| 22 | 13, 21 | syl 14 |
. . . . . . 7
|
| 23 | 22 | 2alimi 1470 |
. . . . . 6
|
| 24 | 19.23v 1897 |
. . . . . . . 8
| |
| 25 | 24 | albii 1484 |
. . . . . . 7
|
| 26 | 19.21v 1887 |
. . . . . . 7
| |
| 27 | 25, 26 | bitri 184 |
. . . . . 6
|
| 28 | 23, 27 | sylib 122 |
. . . . 5
|
| 29 | 28 | eximdv 1894 |
. . . 4
|
| 30 | 11, 29 | biimtrid 152 |
. . 3
|
| 31 | 30 | imp 124 |
. 2
|
| 32 | pm4.24 395 |
. . . . . . . 8
| |
| 33 | 32 | biimpi 120 |
. . . . . . 7
|
| 34 | anim12 344 |
. . . . . . 7
| |
| 35 | eqtr3 2216 |
. . . . . . 7
| |
| 36 | 33, 34, 35 | syl56 34 |
. . . . . 6
|
| 37 | 36 | alanimi 1473 |
. . . . 5
|
| 38 | 19.23v 1897 |
. . . . . . 7
| |
| 39 | 38 | biimpi 120 |
. . . . . 6
|
| 40 | 39 | com12 30 |
. . . . 5
|
| 41 | 37, 40 | syl5 32 |
. . . 4
|
| 42 | 41 | alrimivv 1889 |
. . 3
|
| 43 | 42 | adantl 277 |
. 2
|
| 44 | eqeq1 2203 |
. . . . 5
| |
| 45 | 44 | imbi2d 230 |
. . . 4
|
| 46 | 45 | albidv 1838 |
. . 3
|
| 47 | 46 | eu4 2107 |
. 2
|
| 48 | 31, 43, 47 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |