Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euind | Unicode version |
Description: Existential uniqueness via an indirect equality. (Contributed by NM, 11-Oct-2010.) |
Ref | Expression |
---|---|
euind.1 | |
euind.2 | |
euind.3 |
Ref | Expression |
---|---|
euind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euind.2 | . . . . . 6 | |
2 | 1 | cbvexv 1911 | . . . . 5 |
3 | euind.1 | . . . . . . . . 9 | |
4 | 3 | isseti 2738 | . . . . . . . 8 |
5 | 4 | biantrur 301 | . . . . . . 7 |
6 | 5 | exbii 1598 | . . . . . 6 |
7 | 19.41v 1895 | . . . . . . 7 | |
8 | 7 | exbii 1598 | . . . . . 6 |
9 | excom 1657 | . . . . . 6 | |
10 | 6, 8, 9 | 3bitr2i 207 | . . . . 5 |
11 | 2, 10 | bitri 183 | . . . 4 |
12 | eqeq2 2180 | . . . . . . . . 9 | |
13 | 12 | imim2i 12 | . . . . . . . 8 |
14 | biimpr 129 | . . . . . . . . . 10 | |
15 | 14 | imim2i 12 | . . . . . . . . 9 |
16 | an31 559 | . . . . . . . . . . 11 | |
17 | 16 | imbi1i 237 | . . . . . . . . . 10 |
18 | impexp 261 | . . . . . . . . . 10 | |
19 | impexp 261 | . . . . . . . . . 10 | |
20 | 17, 18, 19 | 3bitr3i 209 | . . . . . . . . 9 |
21 | 15, 20 | sylib 121 | . . . . . . . 8 |
22 | 13, 21 | syl 14 | . . . . . . 7 |
23 | 22 | 2alimi 1449 | . . . . . 6 |
24 | 19.23v 1876 | . . . . . . . 8 | |
25 | 24 | albii 1463 | . . . . . . 7 |
26 | 19.21v 1866 | . . . . . . 7 | |
27 | 25, 26 | bitri 183 | . . . . . 6 |
28 | 23, 27 | sylib 121 | . . . . 5 |
29 | 28 | eximdv 1873 | . . . 4 |
30 | 11, 29 | syl5bi 151 | . . 3 |
31 | 30 | imp 123 | . 2 |
32 | pm4.24 393 | . . . . . . . 8 | |
33 | 32 | biimpi 119 | . . . . . . 7 |
34 | anim12 342 | . . . . . . 7 | |
35 | eqtr3 2190 | . . . . . . 7 | |
36 | 33, 34, 35 | syl56 34 | . . . . . 6 |
37 | 36 | alanimi 1452 | . . . . 5 |
38 | 19.23v 1876 | . . . . . . 7 | |
39 | 38 | biimpi 119 | . . . . . 6 |
40 | 39 | com12 30 | . . . . 5 |
41 | 37, 40 | syl5 32 | . . . 4 |
42 | 41 | alrimivv 1868 | . . 3 |
43 | 42 | adantl 275 | . 2 |
44 | eqeq1 2177 | . . . . 5 | |
45 | 44 | imbi2d 229 | . . . 4 |
46 | 45 | albidv 1817 | . . 3 |
47 | 46 | eu4 2081 | . 2 |
48 | 31, 43, 47 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wex 1485 weu 2019 wcel 2141 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |