ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eumo Unicode version

Theorem 2eumo 2130
Description: Double quantification with existential uniqueness and "at most one." (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eumo  |-  ( E! x E* y ph  ->  E* x E! y
ph )

Proof of Theorem 2eumo
StepHypRef Expression
1 euimmo 2109 . 2  |-  ( A. x ( E! y
ph  ->  E* y ph )  ->  ( E! x E* y ph  ->  E* x E! y ph )
)
2 eumo 2074 . 2  |-  ( E! y ph  ->  E* y ph )
31, 2mpg 1462 1  |-  ( E! x E* y ph  ->  E* x E! y
ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E!weu 2042   E*wmo 2043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator