ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eumo Unicode version

Theorem 2eumo 2166
Description: Double quantification with existential uniqueness and "at most one." (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eumo  |-  ( E! x E* y ph  ->  E* x E! y
ph )

Proof of Theorem 2eumo
StepHypRef Expression
1 euimmo 2145 . 2  |-  ( A. x ( E! y
ph  ->  E* y ph )  ->  ( E! x E* y ph  ->  E* x E! y ph )
)
2 eumo 2109 . 2  |-  ( E! y ph  ->  E* y ph )
31, 2mpg 1497 1  |-  ( E! x E* y ph  ->  E* x E! y
ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E!weu 2077   E*wmo 2078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator