ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2euex Unicode version

Theorem 2euex 2101
Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
2euex  |-  ( E! x E. y ph  ->  E. y E! x ph )

Proof of Theorem 2euex
StepHypRef Expression
1 eu5 2061 . 2  |-  ( E! x E. y ph  <->  ( E. x E. y ph  /\  E* x E. y ph ) )
2 excom 1652 . . . 4  |-  ( E. x E. y ph  <->  E. y E. x ph )
3 hbe1 1483 . . . . . 6  |-  ( E. y ph  ->  A. y E. y ph )
43hbmo 2053 . . . . 5  |-  ( E* x E. y ph  ->  A. y E* x E. y ph )
5 19.8a 1578 . . . . . . 7  |-  ( ph  ->  E. y ph )
65moimi 2079 . . . . . 6  |-  ( E* x E. y ph  ->  E* x ph )
7 df-mo 2018 . . . . . 6  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
86, 7sylib 121 . . . . 5  |-  ( E* x E. y ph  ->  ( E. x ph  ->  E! x ph )
)
94, 8eximdh 1599 . . . 4  |-  ( E* x E. y ph  ->  ( E. y E. x ph  ->  E. y E! x ph ) )
102, 9syl5bi 151 . . 3  |-  ( E* x E. y ph  ->  ( E. x E. y ph  ->  E. y E! x ph ) )
1110impcom 124 . 2  |-  ( ( E. x E. y ph  /\  E* x E. y ph )  ->  E. y E! x ph )
121, 11sylbi 120 1  |-  ( E! x E. y ph  ->  E. y E! x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1480   E!weu 2014   E*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator