| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2euex | Unicode version | ||
| Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| 2euex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu5 2101 |
. 2
| |
| 2 | excom 1687 |
. . . 4
| |
| 3 | hbe1 1518 |
. . . . . 6
| |
| 4 | 3 | hbmo 2093 |
. . . . 5
|
| 5 | 19.8a 1613 |
. . . . . . 7
| |
| 6 | 5 | moimi 2119 |
. . . . . 6
|
| 7 | df-mo 2058 |
. . . . . 6
| |
| 8 | 6, 7 | sylib 122 |
. . . . 5
|
| 9 | 4, 8 | eximdh 1634 |
. . . 4
|
| 10 | 2, 9 | biimtrid 152 |
. . 3
|
| 11 | 10 | impcom 125 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |