Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2euex | Unicode version |
Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
2euex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu5 2061 | . 2 | |
2 | excom 1652 | . . . 4 | |
3 | hbe1 1483 | . . . . . 6 | |
4 | 3 | hbmo 2053 | . . . . 5 |
5 | 19.8a 1578 | . . . . . . 7 | |
6 | 5 | moimi 2079 | . . . . . 6 |
7 | df-mo 2018 | . . . . . 6 | |
8 | 6, 7 | sylib 121 | . . . . 5 |
9 | 4, 8 | eximdh 1599 | . . . 4 |
10 | 2, 9 | syl5bi 151 | . . 3 |
11 | 10 | impcom 124 | . 2 |
12 | 1, 11 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1480 weu 2014 wmo 2015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |