ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2euex Unicode version

Theorem 2euex 2165
Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
2euex  |-  ( E! x E. y ph  ->  E. y E! x ph )

Proof of Theorem 2euex
StepHypRef Expression
1 eu5 2125 . 2  |-  ( E! x E. y ph  <->  ( E. x E. y ph  /\  E* x E. y ph ) )
2 excom 1710 . . . 4  |-  ( E. x E. y ph  <->  E. y E. x ph )
3 hbe1 1541 . . . . . 6  |-  ( E. y ph  ->  A. y E. y ph )
43hbmo 2116 . . . . 5  |-  ( E* x E. y ph  ->  A. y E* x E. y ph )
5 19.8a 1636 . . . . . . 7  |-  ( ph  ->  E. y ph )
65moimi 2143 . . . . . 6  |-  ( E* x E. y ph  ->  E* x ph )
7 df-mo 2081 . . . . . 6  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
86, 7sylib 122 . . . . 5  |-  ( E* x E. y ph  ->  ( E. x ph  ->  E! x ph )
)
94, 8eximdh 1657 . . . 4  |-  ( E* x E. y ph  ->  ( E. y E. x ph  ->  E. y E! x ph ) )
102, 9biimtrid 152 . . 3  |-  ( E* x E. y ph  ->  ( E. x E. y ph  ->  E. y E! x ph ) )
1110impcom 125 . 2  |-  ( ( E. x E. y ph  /\  E* x E. y ph )  ->  E. y E! x ph )
121, 11sylbi 121 1  |-  ( E! x E. y ph  ->  E. y E! x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1538   E!weu 2077   E*wmo 2078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator