ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2euex Unicode version

Theorem 2euex 2106
Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
2euex  |-  ( E! x E. y ph  ->  E. y E! x ph )

Proof of Theorem 2euex
StepHypRef Expression
1 eu5 2066 . 2  |-  ( E! x E. y ph  <->  ( E. x E. y ph  /\  E* x E. y ph ) )
2 excom 1657 . . . 4  |-  ( E. x E. y ph  <->  E. y E. x ph )
3 hbe1 1488 . . . . . 6  |-  ( E. y ph  ->  A. y E. y ph )
43hbmo 2058 . . . . 5  |-  ( E* x E. y ph  ->  A. y E* x E. y ph )
5 19.8a 1583 . . . . . . 7  |-  ( ph  ->  E. y ph )
65moimi 2084 . . . . . 6  |-  ( E* x E. y ph  ->  E* x ph )
7 df-mo 2023 . . . . . 6  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
86, 7sylib 121 . . . . 5  |-  ( E* x E. y ph  ->  ( E. x ph  ->  E! x ph )
)
94, 8eximdh 1604 . . . 4  |-  ( E* x E. y ph  ->  ( E. y E. x ph  ->  E. y E! x ph ) )
102, 9syl5bi 151 . . 3  |-  ( E* x E. y ph  ->  ( E. x E. y ph  ->  E. y E! x ph ) )
1110impcom 124 . 2  |-  ( ( E. x E. y ph  /\  E* x E. y ph )  ->  E. y E! x ph )
121, 11sylbi 120 1  |-  ( E! x E. y ph  ->  E. y E! x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1485   E!weu 2019   E*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator