ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2euex Unicode version

Theorem 2euex 2035
Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
2euex  |-  ( E! x E. y ph  ->  E. y E! x ph )

Proof of Theorem 2euex
StepHypRef Expression
1 eu5 1995 . 2  |-  ( E! x E. y ph  <->  ( E. x E. y ph  /\  E* x E. y ph ) )
2 excom 1599 . . . 4  |-  ( E. x E. y ph  <->  E. y E. x ph )
3 hbe1 1429 . . . . . 6  |-  ( E. y ph  ->  A. y E. y ph )
43hbmo 1987 . . . . 5  |-  ( E* x E. y ph  ->  A. y E* x E. y ph )
5 19.8a 1527 . . . . . . 7  |-  ( ph  ->  E. y ph )
65moimi 2013 . . . . . 6  |-  ( E* x E. y ph  ->  E* x ph )
7 df-mo 1952 . . . . . 6  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
86, 7sylib 120 . . . . 5  |-  ( E* x E. y ph  ->  ( E. x ph  ->  E! x ph )
)
94, 8eximdh 1547 . . . 4  |-  ( E* x E. y ph  ->  ( E. y E. x ph  ->  E. y E! x ph ) )
102, 9syl5bi 150 . . 3  |-  ( E* x E. y ph  ->  ( E. x E. y ph  ->  E. y E! x ph ) )
1110impcom 123 . 2  |-  ( ( E. x E. y ph  /\  E* x E. y ph )  ->  E. y E! x ph )
121, 11sylbi 119 1  |-  ( E! x E. y ph  ->  E. y E! x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   E.wex 1426   E!weu 1948   E*wmo 1949
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator