| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2euex | Unicode version | ||
| Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| 2euex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eu5 2092 | 
. 2
 | |
| 2 | excom 1678 | 
. . . 4
 | |
| 3 | hbe1 1509 | 
. . . . . 6
 | |
| 4 | 3 | hbmo 2084 | 
. . . . 5
 | 
| 5 | 19.8a 1604 | 
. . . . . . 7
 | |
| 6 | 5 | moimi 2110 | 
. . . . . 6
 | 
| 7 | df-mo 2049 | 
. . . . . 6
 | |
| 8 | 6, 7 | sylib 122 | 
. . . . 5
 | 
| 9 | 4, 8 | eximdh 1625 | 
. . . 4
 | 
| 10 | 2, 9 | biimtrid 152 | 
. . 3
 | 
| 11 | 10 | impcom 125 | 
. 2
 | 
| 12 | 1, 11 | sylbi 121 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |