ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eu2ex Unicode version

Theorem 2eu2ex 2167
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eu2ex  |-  ( E! x E! y ph  ->  E. x E. y ph )

Proof of Theorem 2eu2ex
StepHypRef Expression
1 euex 2107 . 2  |-  ( E! x E! y ph  ->  E. x E! y
ph )
2 euex 2107 . . 3  |-  ( E! y ph  ->  E. y ph )
32eximi 1646 . 2  |-  ( E. x E! y ph  ->  E. x E. y ph )
41, 3syl 14 1  |-  ( E! x E! y ph  ->  E. x E. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1538   E!weu 2077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator