| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpcd | Unicode version | ||
| Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 |
|
| Ref | Expression |
|---|---|
| biimpcd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | biimpcd.1 |
. 2
| |
| 3 | 1, 2 | syl5ibcom 155 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpac 298 3impexpbicom 1458 ax16 1836 ax16i 1881 nelneq 2306 nelneq2 2307 nelne1 2466 nelne2 2467 spc2gv 2864 spc3gv 2866 nssne1 3251 nssne2 3252 ifbothdc 3605 difsn 3770 iununir 4011 nbrne1 4064 nbrne2 4065 ss1o0el1 4242 mosubopt 4741 issref 5066 ssimaex 5642 chfnrn 5693 ffnfv 5740 f1elima 5844 dftpos4 6351 tfr1onlemsucaccv 6429 tfrcllemsucaccv 6442 snon0 7039 exmidonfinlem 7303 enq0sym 7547 prop 7590 prubl 7601 negf1o 8456 0fz1 10169 elfzmlbp 10256 swrdnd 11115 maxleast 11557 negfi 11572 isprm2 12472 nprmdvds1 12495 oddprmdvds 12710 exmidsbthrlem 15998 |
| Copyright terms: Public domain | W3C validator |