![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpcd | Unicode version |
Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimpcd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimpcd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | biimpcd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5ibcom 155 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpac 298 3impexpbicom 1449 ax16 1824 ax16i 1869 nelneq 2294 nelneq2 2295 nelne1 2454 nelne2 2455 spc2gv 2851 spc3gv 2853 nssne1 3237 nssne2 3238 ifbothdc 3590 difsn 3755 iununir 3996 nbrne1 4048 nbrne2 4049 ss1o0el1 4226 mosubopt 4724 issref 5048 ssimaex 5618 chfnrn 5669 ffnfv 5716 f1elima 5816 dftpos4 6316 tfr1onlemsucaccv 6394 tfrcllemsucaccv 6407 snon0 6994 exmidonfinlem 7253 enq0sym 7492 prop 7535 prubl 7546 negf1o 8401 0fz1 10111 elfzmlbp 10198 maxleast 11357 negfi 11371 isprm2 12255 nprmdvds1 12278 oddprmdvds 12492 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |