| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpcd | Unicode version | ||
| Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 |
|
| Ref | Expression |
|---|---|
| biimpcd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | biimpcd.1 |
. 2
| |
| 3 | 1, 2 | syl5ibcom 155 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpac 298 3impexpbicom 1481 ax16 1859 ax16i 1904 nelneq 2330 nelneq2 2331 nelne1 2490 nelne2 2491 spc2gv 2894 spc3gv 2896 nssne1 3282 nssne2 3283 ifbothdc 3637 ifpprsnssdc 3774 difsn 3805 iununir 4049 nbrne1 4102 nbrne2 4103 ss1o0el1 4281 mosubopt 4784 issref 5111 ssimaex 5695 chfnrn 5746 ffnfv 5793 f1elima 5897 dftpos4 6409 tfr1onlemsucaccv 6487 tfrcllemsucaccv 6500 snon0 7102 en2prde 7366 exmidonfinlem 7371 enq0sym 7619 prop 7662 prubl 7673 negf1o 8528 0fz1 10241 elfzmlbp 10328 swrdnd 11191 maxleast 11724 negfi 11739 isprm2 12639 nprmdvds1 12662 oddprmdvds 12877 ushgredgedg 16024 ushgredgedgloop 16026 exmidsbthrlem 16390 |
| Copyright terms: Public domain | W3C validator |