Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimpcd | Unicode version |
Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimpcd.1 |
Ref | Expression |
---|---|
biimpcd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | biimpcd.1 | . 2 | |
3 | 1, 2 | syl5ibcom 155 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpac 298 3impexpbicom 1436 ax16 1811 ax16i 1856 nelneq 2276 nelneq2 2277 nelne1 2435 nelne2 2436 spc2gv 2826 spc3gv 2828 nssne1 3211 nssne2 3212 ifbothdc 3564 difsn 3726 iununir 3965 nbrne1 4017 nbrne2 4018 ss1o0el1 4192 mosubopt 4685 issref 5003 ssimaex 5569 chfnrn 5619 ffnfv 5666 f1elima 5764 dftpos4 6254 tfr1onlemsucaccv 6332 tfrcllemsucaccv 6345 snon0 6925 exmidonfinlem 7182 enq0sym 7406 prop 7449 prubl 7460 negf1o 8313 0fz1 10013 elfzmlbp 10100 maxleast 11188 negfi 11202 isprm2 12082 nprmdvds1 12105 oddprmdvds 12317 exmidsbthrlem 14329 |
Copyright terms: Public domain | W3C validator |