![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpcd | Unicode version |
Description: Deduce a commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimpcd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimpcd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | biimpcd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5ibcom 155 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpac 298 3impexpbicom 1449 ax16 1824 ax16i 1869 nelneq 2294 nelneq2 2295 nelne1 2454 nelne2 2455 spc2gv 2852 spc3gv 2854 nssne1 3238 nssne2 3239 ifbothdc 3591 difsn 3756 iununir 3997 nbrne1 4049 nbrne2 4050 ss1o0el1 4227 mosubopt 4725 issref 5049 ssimaex 5619 chfnrn 5670 ffnfv 5717 f1elima 5817 dftpos4 6318 tfr1onlemsucaccv 6396 tfrcllemsucaccv 6409 snon0 6996 exmidonfinlem 7255 enq0sym 7494 prop 7537 prubl 7548 negf1o 8403 0fz1 10114 elfzmlbp 10201 maxleast 11360 negfi 11374 isprm2 12258 nprmdvds1 12281 oddprmdvds 12495 exmidsbthrlem 15582 |
Copyright terms: Public domain | W3C validator |