ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr3g Unicode version

Theorem 3sstr3g 3134
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
Hypotheses
Ref Expression
3sstr3g.1  |-  ( ph  ->  A  C_  B )
3sstr3g.2  |-  A  =  C
3sstr3g.3  |-  B  =  D
Assertion
Ref Expression
3sstr3g  |-  ( ph  ->  C  C_  D )

Proof of Theorem 3sstr3g
StepHypRef Expression
1 3sstr3g.1 . 2  |-  ( ph  ->  A  C_  B )
2 3sstr3g.2 . . 3  |-  A  =  C
3 3sstr3g.3 . . 3  |-  B  =  D
42, 3sseq12i 3120 . 2  |-  ( A 
C_  B  <->  C  C_  D
)
51, 4sylib 121 1  |-  ( ph  ->  C  C_  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    C_ wss 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-in 3072  df-ss 3079
This theorem is referenced by:  hmeontr  12471
  Copyright terms: Public domain W3C validator