ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr4g Unicode version

Theorem 3sstr4g 3223
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr4g.1  |-  ( ph  ->  A  C_  B )
3sstr4g.2  |-  C  =  A
3sstr4g.3  |-  D  =  B
Assertion
Ref Expression
3sstr4g  |-  ( ph  ->  C  C_  D )

Proof of Theorem 3sstr4g
StepHypRef Expression
1 3sstr4g.1 . 2  |-  ( ph  ->  A  C_  B )
2 3sstr4g.2 . . 3  |-  C  =  A
3 3sstr4g.3 . . 3  |-  D  =  B
42, 3sseq12i 3208 . 2  |-  ( C 
C_  D  <->  A  C_  B
)
51, 4sylibr 134 1  |-  ( ph  ->  C  C_  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3160  df-ss 3167
This theorem is referenced by:  rabss2  3263  unss2  3331  sslin  3386  ssopab2  4307  xpss12  4767  coss1  4818  coss2  4819  cnvss  4836  rnss  4893  ssres  4969  ssres2  4970  imass1  5041  imass2  5042  imadif  5335  imain  5337  ssoprab2  5975  suppssfv  6128  suppssov1  6129  tposss  6301  ss2ixp  6767  isumsplit  11637  isumrpcl  11640
  Copyright terms: Public domain W3C validator