ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr4g Unicode version

Theorem 3sstr4g 3199
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr4g.1  |-  ( ph  ->  A  C_  B )
3sstr4g.2  |-  C  =  A
3sstr4g.3  |-  D  =  B
Assertion
Ref Expression
3sstr4g  |-  ( ph  ->  C  C_  D )

Proof of Theorem 3sstr4g
StepHypRef Expression
1 3sstr4g.1 . 2  |-  ( ph  ->  A  C_  B )
2 3sstr4g.2 . . 3  |-  C  =  A
3 3sstr4g.3 . . 3  |-  D  =  B
42, 3sseq12i 3184 . 2  |-  ( C 
C_  D  <->  A  C_  B
)
51, 4sylibr 134 1  |-  ( ph  ->  C  C_  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    C_ wss 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3136  df-ss 3143
This theorem is referenced by:  rabss2  3239  unss2  3307  sslin  3362  ssopab2  4276  xpss12  4734  coss1  4783  coss2  4784  cnvss  4801  rnss  4858  ssres  4934  ssres2  4935  imass1  5004  imass2  5005  imadif  5297  imain  5299  ssoprab2  5931  suppssfv  6079  suppssov1  6080  tposss  6247  ss2ixp  6711  isumsplit  11499  isumrpcl  11502
  Copyright terms: Public domain W3C validator