| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3sstr4g | Unicode version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4g.1 |
|
| 3sstr4g.2 |
|
| 3sstr4g.3 |
|
| Ref | Expression |
|---|---|
| 3sstr4g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4g.1 |
. 2
| |
| 2 | 3sstr4g.2 |
. . 3
| |
| 3 | 3sstr4g.3 |
. . 3
| |
| 4 | 2, 3 | sseq12i 3211 |
. 2
|
| 5 | 1, 4 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: rabss2 3266 unss2 3334 sslin 3389 ssopab2 4310 xpss12 4770 coss1 4821 coss2 4822 cnvss 4839 rnss 4896 ssres 4972 ssres2 4973 imass1 5044 imass2 5045 imadif 5338 imain 5340 ssoprab2 5978 suppssfv 6131 suppssov1 6132 tposss 6304 ss2ixp 6770 isumsplit 11656 isumrpcl 11659 |
| Copyright terms: Public domain | W3C validator |