| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3sstr4g | Unicode version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4g.1 |
|
| 3sstr4g.2 |
|
| 3sstr4g.3 |
|
| Ref | Expression |
|---|---|
| 3sstr4g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4g.1 |
. 2
| |
| 2 | 3sstr4g.2 |
. . 3
| |
| 3 | 3sstr4g.3 |
. . 3
| |
| 4 | 2, 3 | sseq12i 3212 |
. 2
|
| 5 | 1, 4 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: rabss2 3267 unss2 3335 sslin 3390 ssopab2 4311 xpss12 4771 coss1 4822 coss2 4823 cnvss 4840 rnss 4897 ssres 4973 ssres2 4974 imass1 5045 imass2 5046 imadif 5339 imain 5341 ssoprab2 5982 suppssfv 6135 suppssov1 6136 tposss 6313 ss2ixp 6779 isumsplit 11673 isumrpcl 11676 |
| Copyright terms: Public domain | W3C validator |