ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr4g Unicode version

Theorem 3sstr4g 3244
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr4g.1  |-  ( ph  ->  A  C_  B )
3sstr4g.2  |-  C  =  A
3sstr4g.3  |-  D  =  B
Assertion
Ref Expression
3sstr4g  |-  ( ph  ->  C  C_  D )

Proof of Theorem 3sstr4g
StepHypRef Expression
1 3sstr4g.1 . 2  |-  ( ph  ->  A  C_  B )
2 3sstr4g.2 . . 3  |-  C  =  A
3 3sstr4g.3 . . 3  |-  D  =  B
42, 3sseq12i 3229 . 2  |-  ( C 
C_  D  <->  A  C_  B
)
51, 4sylibr 134 1  |-  ( ph  ->  C  C_  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187
This theorem is referenced by:  rabss2  3284  unss2  3352  sslin  3407  ssopab2  4340  xpss12  4800  coss1  4851  coss2  4852  cnvss  4869  rnss  4927  ssres  5004  ssres2  5005  imass1  5076  imass2  5077  imadif  5373  imain  5375  ssoprab2  6024  suppssfv  6177  suppssov1  6178  tposss  6355  ss2ixp  6821  isumsplit  11917  isumrpcl  11920
  Copyright terms: Public domain W3C validator