| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3sstr4g | Unicode version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4g.1 |
|
| 3sstr4g.2 |
|
| 3sstr4g.3 |
|
| Ref | Expression |
|---|---|
| 3sstr4g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4g.1 |
. 2
| |
| 2 | 3sstr4g.2 |
. . 3
| |
| 3 | 3sstr4g.3 |
. . 3
| |
| 4 | 2, 3 | sseq12i 3221 |
. 2
|
| 5 | 1, 4 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: rabss2 3276 unss2 3344 sslin 3399 ssopab2 4323 xpss12 4783 coss1 4834 coss2 4835 cnvss 4852 rnss 4909 ssres 4986 ssres2 4987 imass1 5058 imass2 5059 imadif 5355 imain 5357 ssoprab2 6003 suppssfv 6156 suppssov1 6157 tposss 6334 ss2ixp 6800 isumsplit 11835 isumrpcl 11838 |
| Copyright terms: Public domain | W3C validator |