ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeontr Unicode version

Theorem hmeontr 14818
Description: Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1  |-  X  = 
U. J
Assertion
Ref Expression
hmeontr  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  =  ( F " (
( int `  J
) `  A )
) )

Proof of Theorem hmeontr
StepHypRef Expression
1 hmeocn 14810 . . . . . 6  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
21adantr 276 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F  e.  ( J  Cn  K
) )
3 imassrn 5034 . . . . . 6  |-  ( F
" A )  C_  ran  F
4 hmeoopn.1 . . . . . . . . 9  |-  X  = 
U. J
5 eqid 2205 . . . . . . . . 9  |-  U. K  =  U. K
64, 5hmeof1o 14814 . . . . . . . 8  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> U. K )
76adantr 276 . . . . . . 7  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F : X -1-1-onto-> U. K )
8 f1ofo 5531 . . . . . . 7  |-  ( F : X -1-1-onto-> U. K  ->  F : X -onto-> U. K )
9 forn 5503 . . . . . . 7  |-  ( F : X -onto-> U. K  ->  ran  F  =  U. K )
107, 8, 93syl 17 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ran  F  =  U. K )
113, 10sseqtrid 3243 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( F " A )  C_  U. K )
125cnntri 14729 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( F " A ) 
C_  U. K )  -> 
( `' F "
( ( int `  K
) `  ( F " A ) ) ) 
C_  ( ( int `  J ) `  ( `' F " ( F
" A ) ) ) )
132, 11, 12syl2anc 411 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( ( int `  K ) `
 ( F " A ) ) ) 
C_  ( ( int `  J ) `  ( `' F " ( F
" A ) ) ) )
14 f1of1 5523 . . . . . . 7  |-  ( F : X -1-1-onto-> U. K  ->  F : X -1-1-> U. K )
157, 14syl 14 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F : X -1-1-> U. K )
16 f1imacnv 5541 . . . . . 6  |-  ( ( F : X -1-1-> U. K  /\  A  C_  X
)  ->  ( `' F " ( F " A ) )  =  A )
1715, 16sylancom 420 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( F
" A ) )  =  A )
1817fveq2d 5582 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  J
) `  ( `' F " ( F " A ) ) )  =  ( ( int `  J ) `  A
) )
1913, 18sseqtrd 3231 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( ( int `  K ) `
 ( F " A ) ) ) 
C_  ( ( int `  J ) `  A
) )
20 f1ofun 5526 . . . . 5  |-  ( F : X -1-1-onto-> U. K  ->  Fun  F )
217, 20syl 14 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  Fun  F )
22 cntop2 14707 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
232, 22syl 14 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  K  e.  Top )
245ntrss3 14628 . . . . . 6  |-  ( ( K  e.  Top  /\  ( F " A ) 
C_  U. K )  -> 
( ( int `  K
) `  ( F " A ) )  C_  U. K )
2523, 11, 24syl2anc 411 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  C_  U. K )
2625, 10sseqtrrd 3232 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  C_  ran  F )
27 funimass1 5352 . . . 4  |-  ( ( Fun  F  /\  (
( int `  K
) `  ( F " A ) )  C_  ran  F )  ->  (
( `' F "
( ( int `  K
) `  ( F " A ) ) ) 
C_  ( ( int `  J ) `  A
)  ->  ( ( int `  K ) `  ( F " A ) )  C_  ( F " ( ( int `  J
) `  A )
) ) )
2821, 26, 27syl2anc 411 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( `' F "
( ( int `  K
) `  ( F " A ) ) ) 
C_  ( ( int `  J ) `  A
)  ->  ( ( int `  K ) `  ( F " A ) )  C_  ( F " ( ( int `  J
) `  A )
) ) )
2919, 28mpd 13 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  C_  ( F " ( ( int `  J ) `
 A ) ) )
30 hmeocnvcn 14811 . . . 4  |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K  Cn  J
) )
314cnntri 14729 . . . 4  |-  ( ( `' F  e.  ( K  Cn  J )  /\  A  C_  X )  -> 
( `' `' F " ( ( int `  J
) `  A )
)  C_  ( ( int `  K ) `  ( `' `' F " A ) ) )
3230, 31sylan 283 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' `' F " ( ( int `  J ) `
 A ) ) 
C_  ( ( int `  K ) `  ( `' `' F " A ) ) )
33 imacnvcnv 5148 . . 3  |-  ( `' `' F " ( ( int `  J ) `
 A ) )  =  ( F "
( ( int `  J
) `  A )
)
34 imacnvcnv 5148 . . . 4  |-  ( `' `' F " A )  =  ( F " A )
3534fveq2i 5581 . . 3  |-  ( ( int `  K ) `
 ( `' `' F " A ) )  =  ( ( int `  K ) `  ( F " A ) )
3632, 33, 353sstr3g 3235 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( F " ( ( int `  J ) `  A
) )  C_  (
( int `  K
) `  ( F " A ) ) )
3729, 36eqssd 3210 1  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  =  ( F " (
( int `  J
) `  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    C_ wss 3166   U.cuni 3850   `'ccnv 4675   ran crn 4677   "cima 4679   Fun wfun 5266   -1-1->wf1 5269   -onto->wfo 5270   -1-1-onto->wf1o 5271   ` cfv 5272  (class class class)co 5946   Topctop 14502   intcnt 14598    Cn ccn 14690   Homeochmeo 14805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-map 6739  df-top 14503  df-topon 14516  df-ntr 14601  df-cn 14693  df-hmeo 14806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator