ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeontr Unicode version

Theorem hmeontr 14549
Description: Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1  |-  X  = 
U. J
Assertion
Ref Expression
hmeontr  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  =  ( F " (
( int `  J
) `  A )
) )

Proof of Theorem hmeontr
StepHypRef Expression
1 hmeocn 14541 . . . . . 6  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
21adantr 276 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F  e.  ( J  Cn  K
) )
3 imassrn 5020 . . . . . 6  |-  ( F
" A )  C_  ran  F
4 hmeoopn.1 . . . . . . . . 9  |-  X  = 
U. J
5 eqid 2196 . . . . . . . . 9  |-  U. K  =  U. K
64, 5hmeof1o 14545 . . . . . . . 8  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> U. K )
76adantr 276 . . . . . . 7  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F : X -1-1-onto-> U. K )
8 f1ofo 5511 . . . . . . 7  |-  ( F : X -1-1-onto-> U. K  ->  F : X -onto-> U. K )
9 forn 5483 . . . . . . 7  |-  ( F : X -onto-> U. K  ->  ran  F  =  U. K )
107, 8, 93syl 17 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ran  F  =  U. K )
113, 10sseqtrid 3233 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( F " A )  C_  U. K )
125cnntri 14460 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( F " A ) 
C_  U. K )  -> 
( `' F "
( ( int `  K
) `  ( F " A ) ) ) 
C_  ( ( int `  J ) `  ( `' F " ( F
" A ) ) ) )
132, 11, 12syl2anc 411 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( ( int `  K ) `
 ( F " A ) ) ) 
C_  ( ( int `  J ) `  ( `' F " ( F
" A ) ) ) )
14 f1of1 5503 . . . . . . 7  |-  ( F : X -1-1-onto-> U. K  ->  F : X -1-1-> U. K )
157, 14syl 14 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F : X -1-1-> U. K )
16 f1imacnv 5521 . . . . . 6  |-  ( ( F : X -1-1-> U. K  /\  A  C_  X
)  ->  ( `' F " ( F " A ) )  =  A )
1715, 16sylancom 420 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( F
" A ) )  =  A )
1817fveq2d 5562 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  J
) `  ( `' F " ( F " A ) ) )  =  ( ( int `  J ) `  A
) )
1913, 18sseqtrd 3221 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( ( int `  K ) `
 ( F " A ) ) ) 
C_  ( ( int `  J ) `  A
) )
20 f1ofun 5506 . . . . 5  |-  ( F : X -1-1-onto-> U. K  ->  Fun  F )
217, 20syl 14 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  Fun  F )
22 cntop2 14438 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
232, 22syl 14 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  K  e.  Top )
245ntrss3 14359 . . . . . 6  |-  ( ( K  e.  Top  /\  ( F " A ) 
C_  U. K )  -> 
( ( int `  K
) `  ( F " A ) )  C_  U. K )
2523, 11, 24syl2anc 411 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  C_  U. K )
2625, 10sseqtrrd 3222 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  C_  ran  F )
27 funimass1 5335 . . . 4  |-  ( ( Fun  F  /\  (
( int `  K
) `  ( F " A ) )  C_  ran  F )  ->  (
( `' F "
( ( int `  K
) `  ( F " A ) ) ) 
C_  ( ( int `  J ) `  A
)  ->  ( ( int `  K ) `  ( F " A ) )  C_  ( F " ( ( int `  J
) `  A )
) ) )
2821, 26, 27syl2anc 411 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( `' F "
( ( int `  K
) `  ( F " A ) ) ) 
C_  ( ( int `  J ) `  A
)  ->  ( ( int `  K ) `  ( F " A ) )  C_  ( F " ( ( int `  J
) `  A )
) ) )
2919, 28mpd 13 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  C_  ( F " ( ( int `  J ) `
 A ) ) )
30 hmeocnvcn 14542 . . . 4  |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K  Cn  J
) )
314cnntri 14460 . . . 4  |-  ( ( `' F  e.  ( K  Cn  J )  /\  A  C_  X )  -> 
( `' `' F " ( ( int `  J
) `  A )
)  C_  ( ( int `  K ) `  ( `' `' F " A ) ) )
3230, 31sylan 283 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' `' F " ( ( int `  J ) `
 A ) ) 
C_  ( ( int `  K ) `  ( `' `' F " A ) ) )
33 imacnvcnv 5134 . . 3  |-  ( `' `' F " ( ( int `  J ) `
 A ) )  =  ( F "
( ( int `  J
) `  A )
)
34 imacnvcnv 5134 . . . 4  |-  ( `' `' F " A )  =  ( F " A )
3534fveq2i 5561 . . 3  |-  ( ( int `  K ) `
 ( `' `' F " A ) )  =  ( ( int `  K ) `  ( F " A ) )
3632, 33, 353sstr3g 3225 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( F " ( ( int `  J ) `  A
) )  C_  (
( int `  K
) `  ( F " A ) ) )
3729, 36eqssd 3200 1  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  =  ( F " (
( int `  J
) `  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    C_ wss 3157   U.cuni 3839   `'ccnv 4662   ran crn 4664   "cima 4666   Fun wfun 5252   -1-1->wf1 5255   -onto->wfo 5256   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922   Topctop 14233   intcnt 14329    Cn ccn 14421   Homeochmeo 14536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-top 14234  df-topon 14247  df-ntr 14332  df-cn 14424  df-hmeo 14537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator