ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeontr Unicode version

Theorem hmeontr 12963
Description: Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1  |-  X  = 
U. J
Assertion
Ref Expression
hmeontr  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  =  ( F " (
( int `  J
) `  A )
) )

Proof of Theorem hmeontr
StepHypRef Expression
1 hmeocn 12955 . . . . . 6  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
21adantr 274 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F  e.  ( J  Cn  K
) )
3 imassrn 4957 . . . . . 6  |-  ( F
" A )  C_  ran  F
4 hmeoopn.1 . . . . . . . . 9  |-  X  = 
U. J
5 eqid 2165 . . . . . . . . 9  |-  U. K  =  U. K
64, 5hmeof1o 12959 . . . . . . . 8  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> U. K )
76adantr 274 . . . . . . 7  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F : X -1-1-onto-> U. K )
8 f1ofo 5439 . . . . . . 7  |-  ( F : X -1-1-onto-> U. K  ->  F : X -onto-> U. K )
9 forn 5413 . . . . . . 7  |-  ( F : X -onto-> U. K  ->  ran  F  =  U. K )
107, 8, 93syl 17 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ran  F  =  U. K )
113, 10sseqtrid 3192 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( F " A )  C_  U. K )
125cnntri 12874 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( F " A ) 
C_  U. K )  -> 
( `' F "
( ( int `  K
) `  ( F " A ) ) ) 
C_  ( ( int `  J ) `  ( `' F " ( F
" A ) ) ) )
132, 11, 12syl2anc 409 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( ( int `  K ) `
 ( F " A ) ) ) 
C_  ( ( int `  J ) `  ( `' F " ( F
" A ) ) ) )
14 f1of1 5431 . . . . . . 7  |-  ( F : X -1-1-onto-> U. K  ->  F : X -1-1-> U. K )
157, 14syl 14 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F : X -1-1-> U. K )
16 f1imacnv 5449 . . . . . 6  |-  ( ( F : X -1-1-> U. K  /\  A  C_  X
)  ->  ( `' F " ( F " A ) )  =  A )
1715, 16sylancom 417 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( F
" A ) )  =  A )
1817fveq2d 5490 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  J
) `  ( `' F " ( F " A ) ) )  =  ( ( int `  J ) `  A
) )
1913, 18sseqtrd 3180 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( ( int `  K ) `
 ( F " A ) ) ) 
C_  ( ( int `  J ) `  A
) )
20 f1ofun 5434 . . . . 5  |-  ( F : X -1-1-onto-> U. K  ->  Fun  F )
217, 20syl 14 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  Fun  F )
22 cntop2 12852 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
232, 22syl 14 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  K  e.  Top )
245ntrss3 12773 . . . . . 6  |-  ( ( K  e.  Top  /\  ( F " A ) 
C_  U. K )  -> 
( ( int `  K
) `  ( F " A ) )  C_  U. K )
2523, 11, 24syl2anc 409 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  C_  U. K )
2625, 10sseqtrrd 3181 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  C_  ran  F )
27 funimass1 5265 . . . 4  |-  ( ( Fun  F  /\  (
( int `  K
) `  ( F " A ) )  C_  ran  F )  ->  (
( `' F "
( ( int `  K
) `  ( F " A ) ) ) 
C_  ( ( int `  J ) `  A
)  ->  ( ( int `  K ) `  ( F " A ) )  C_  ( F " ( ( int `  J
) `  A )
) ) )
2821, 26, 27syl2anc 409 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( `' F "
( ( int `  K
) `  ( F " A ) ) ) 
C_  ( ( int `  J ) `  A
)  ->  ( ( int `  K ) `  ( F " A ) )  C_  ( F " ( ( int `  J
) `  A )
) ) )
2919, 28mpd 13 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  C_  ( F " ( ( int `  J ) `
 A ) ) )
30 hmeocnvcn 12956 . . . 4  |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K  Cn  J
) )
314cnntri 12874 . . . 4  |-  ( ( `' F  e.  ( K  Cn  J )  /\  A  C_  X )  -> 
( `' `' F " ( ( int `  J
) `  A )
)  C_  ( ( int `  K ) `  ( `' `' F " A ) ) )
3230, 31sylan 281 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' `' F " ( ( int `  J ) `
 A ) ) 
C_  ( ( int `  K ) `  ( `' `' F " A ) ) )
33 imacnvcnv 5068 . . 3  |-  ( `' `' F " ( ( int `  J ) `
 A ) )  =  ( F "
( ( int `  J
) `  A )
)
34 imacnvcnv 5068 . . . 4  |-  ( `' `' F " A )  =  ( F " A )
3534fveq2i 5489 . . 3  |-  ( ( int `  K ) `
 ( `' `' F " A ) )  =  ( ( int `  K ) `  ( F " A ) )
3632, 33, 353sstr3g 3184 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( F " ( ( int `  J ) `  A
) )  C_  (
( int `  K
) `  ( F " A ) ) )
3729, 36eqssd 3159 1  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  =  ( F " (
( int `  J
) `  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    C_ wss 3116   U.cuni 3789   `'ccnv 4603   ran crn 4605   "cima 4607   Fun wfun 5182   -1-1->wf1 5185   -onto->wfo 5186   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842   Topctop 12645   intcnt 12743    Cn ccn 12835   Homeochmeo 12950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-top 12646  df-topon 12659  df-ntr 12746  df-cn 12838  df-hmeo 12951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator