ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeontr Unicode version

Theorem hmeontr 13852
Description: Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1  |-  X  = 
U. J
Assertion
Ref Expression
hmeontr  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  =  ( F " (
( int `  J
) `  A )
) )

Proof of Theorem hmeontr
StepHypRef Expression
1 hmeocn 13844 . . . . . 6  |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K
) )
21adantr 276 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F  e.  ( J  Cn  K
) )
3 imassrn 4983 . . . . . 6  |-  ( F
" A )  C_  ran  F
4 hmeoopn.1 . . . . . . . . 9  |-  X  = 
U. J
5 eqid 2177 . . . . . . . . 9  |-  U. K  =  U. K
64, 5hmeof1o 13848 . . . . . . . 8  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> U. K )
76adantr 276 . . . . . . 7  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F : X -1-1-onto-> U. K )
8 f1ofo 5470 . . . . . . 7  |-  ( F : X -1-1-onto-> U. K  ->  F : X -onto-> U. K )
9 forn 5443 . . . . . . 7  |-  ( F : X -onto-> U. K  ->  ran  F  =  U. K )
107, 8, 93syl 17 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ran  F  =  U. K )
113, 10sseqtrid 3207 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( F " A )  C_  U. K )
125cnntri 13763 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( F " A ) 
C_  U. K )  -> 
( `' F "
( ( int `  K
) `  ( F " A ) ) ) 
C_  ( ( int `  J ) `  ( `' F " ( F
" A ) ) ) )
132, 11, 12syl2anc 411 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( ( int `  K ) `
 ( F " A ) ) ) 
C_  ( ( int `  J ) `  ( `' F " ( F
" A ) ) ) )
14 f1of1 5462 . . . . . . 7  |-  ( F : X -1-1-onto-> U. K  ->  F : X -1-1-> U. K )
157, 14syl 14 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  F : X -1-1-> U. K )
16 f1imacnv 5480 . . . . . 6  |-  ( ( F : X -1-1-> U. K  /\  A  C_  X
)  ->  ( `' F " ( F " A ) )  =  A )
1715, 16sylancom 420 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( F
" A ) )  =  A )
1817fveq2d 5521 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  J
) `  ( `' F " ( F " A ) ) )  =  ( ( int `  J ) `  A
) )
1913, 18sseqtrd 3195 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' F " ( ( int `  K ) `
 ( F " A ) ) ) 
C_  ( ( int `  J ) `  A
) )
20 f1ofun 5465 . . . . 5  |-  ( F : X -1-1-onto-> U. K  ->  Fun  F )
217, 20syl 14 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  Fun  F )
22 cntop2 13741 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
232, 22syl 14 . . . . . 6  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  K  e.  Top )
245ntrss3 13662 . . . . . 6  |-  ( ( K  e.  Top  /\  ( F " A ) 
C_  U. K )  -> 
( ( int `  K
) `  ( F " A ) )  C_  U. K )
2523, 11, 24syl2anc 411 . . . . 5  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  C_  U. K )
2625, 10sseqtrrd 3196 . . . 4  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  C_  ran  F )
27 funimass1 5295 . . . 4  |-  ( ( Fun  F  /\  (
( int `  K
) `  ( F " A ) )  C_  ran  F )  ->  (
( `' F "
( ( int `  K
) `  ( F " A ) ) ) 
C_  ( ( int `  J ) `  A
)  ->  ( ( int `  K ) `  ( F " A ) )  C_  ( F " ( ( int `  J
) `  A )
) ) )
2821, 26, 27syl2anc 411 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( `' F "
( ( int `  K
) `  ( F " A ) ) ) 
C_  ( ( int `  J ) `  A
)  ->  ( ( int `  K ) `  ( F " A ) )  C_  ( F " ( ( int `  J
) `  A )
) ) )
2919, 28mpd 13 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  C_  ( F " ( ( int `  J ) `
 A ) ) )
30 hmeocnvcn 13845 . . . 4  |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K  Cn  J
) )
314cnntri 13763 . . . 4  |-  ( ( `' F  e.  ( K  Cn  J )  /\  A  C_  X )  -> 
( `' `' F " ( ( int `  J
) `  A )
)  C_  ( ( int `  K ) `  ( `' `' F " A ) ) )
3230, 31sylan 283 . . 3  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( `' `' F " ( ( int `  J ) `
 A ) ) 
C_  ( ( int `  K ) `  ( `' `' F " A ) ) )
33 imacnvcnv 5095 . . 3  |-  ( `' `' F " ( ( int `  J ) `
 A ) )  =  ( F "
( ( int `  J
) `  A )
)
34 imacnvcnv 5095 . . . 4  |-  ( `' `' F " A )  =  ( F " A )
3534fveq2i 5520 . . 3  |-  ( ( int `  K ) `
 ( `' `' F " A ) )  =  ( ( int `  K ) `  ( F " A ) )
3632, 33, 353sstr3g 3199 . 2  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  ( F " ( ( int `  J ) `  A
) )  C_  (
( int `  K
) `  ( F " A ) ) )
3729, 36eqssd 3174 1  |-  ( ( F  e.  ( J
Homeo K )  /\  A  C_  X )  ->  (
( int `  K
) `  ( F " A ) )  =  ( F " (
( int `  J
) `  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    C_ wss 3131   U.cuni 3811   `'ccnv 4627   ran crn 4629   "cima 4631   Fun wfun 5212   -1-1->wf1 5215   -onto->wfo 5216   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5877   Topctop 13536   intcnt 13632    Cn ccn 13724   Homeochmeo 13839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-top 13537  df-topon 13550  df-ntr 13635  df-cn 13727  df-hmeo 13840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator