![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3sstr3g | GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
Ref | Expression |
---|---|
3sstr3g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr3g.2 | ⊢ 𝐴 = 𝐶 |
3sstr3g.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3sstr3g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr3g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
3 | 3sstr3g.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
4 | 2, 3 | sseq12i 3185 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐷) |
5 | 1, 4 | sylib 122 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ⊆ wss 3131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-in 3137 df-ss 3144 |
This theorem is referenced by: hmeontr 13852 |
Copyright terms: Public domain | W3C validator |