ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr3g GIF version

Theorem 3sstr3g 3243
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
Hypotheses
Ref Expression
3sstr3g.1 (𝜑𝐴𝐵)
3sstr3g.2 𝐴 = 𝐶
3sstr3g.3 𝐵 = 𝐷
Assertion
Ref Expression
3sstr3g (𝜑𝐶𝐷)

Proof of Theorem 3sstr3g
StepHypRef Expression
1 3sstr3g.1 . 2 (𝜑𝐴𝐵)
2 3sstr3g.2 . . 3 𝐴 = 𝐶
3 3sstr3g.3 . . 3 𝐵 = 𝐷
42, 3sseq12i 3229 . 2 (𝐴𝐵𝐶𝐷)
51, 4sylib 122 1 (𝜑𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187
This theorem is referenced by:  hmeontr  14900
  Copyright terms: Public domain W3C validator