| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3sstr3g | GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
| Ref | Expression |
|---|---|
| 3sstr3g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr3g.2 | ⊢ 𝐴 = 𝐶 |
| 3sstr3g.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3sstr3g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr3g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | 3sstr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 3 | 3sstr3g.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
| 4 | 2, 3 | sseq12i 3229 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐷) |
| 5 | 1, 4 | sylib 122 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: hmeontr 14900 |
| Copyright terms: Public domain | W3C validator |