ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a16gb Unicode version

Theorem a16gb 1819
Description: A generalization of axiom ax-16 1768. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
a16gb  |-  ( A. x  x  =  y  ->  ( ph  <->  A. z ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem a16gb
StepHypRef Expression
1 a16g 1818 . 2  |-  ( A. x  x  =  y  ->  ( ph  ->  A. z ph ) )
2 ax-4 1470 . 2  |-  ( A. z ph  ->  ph )
31, 2impbid1 141 1  |-  ( A. x  x  =  y  ->  ( ph  <->  A. z ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1312
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-sb 1719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator