| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > a16gb | GIF version | ||
| Description: A generalization of Axiom ax-16 1837. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| a16gb | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a16g 1887 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | |
| 2 | ax-4 1533 | . 2 ⊢ (∀𝑧𝜑 → 𝜑) | |
| 3 | 1, 2 | impbid1 142 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |