Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > a16gb | GIF version |
Description: A generalization of Axiom ax-16 1807. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
a16gb | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a16g 1857 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | |
2 | ax-4 1503 | . 2 ⊢ (∀𝑧𝜑 → 𝜑) | |
3 | 1, 2 | impbid1 141 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |