ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a16gb GIF version

Theorem a16gb 1888
Description: A generalization of Axiom ax-16 1837. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
a16gb (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem a16gb
StepHypRef Expression
1 a16g 1887 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
2 ax-4 1533 . 2 (∀𝑧𝜑𝜑)
31, 2impbid1 142 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ ∀𝑧𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator