| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > a16g | Unicode version | ||
| Description: A generalization of Axiom ax-16 1828. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| a16g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aev 1826 |
. 2
| |
| 2 | ax16 1827 |
. 2
| |
| 3 | biidd 172 |
. . . 4
| |
| 4 | 3 | dral1 1744 |
. . 3
|
| 5 | 4 | biimprd 158 |
. 2
|
| 6 | 1, 2, 5 | sylsyld 58 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: a16gb 1879 a16nf 1880 |
| Copyright terms: Public domain | W3C validator |