| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > a16g | Unicode version | ||
| Description: A generalization of Axiom ax-16 1837. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| a16g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aev 1835 |
. 2
| |
| 2 | ax16 1836 |
. 2
| |
| 3 | biidd 172 |
. . . 4
| |
| 4 | 3 | dral1 1753 |
. . 3
|
| 5 | 4 | biimprd 158 |
. 2
|
| 6 | 1, 2, 5 | sylsyld 58 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: a16gb 1888 a16nf 1889 |
| Copyright terms: Public domain | W3C validator |