Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > a16g | Unicode version |
Description: A generalization of Axiom ax-16 1794. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
a16g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aev 1792 | . 2 | |
2 | ax16 1793 | . 2 | |
3 | biidd 171 | . . . 4 | |
4 | 3 | dral1 1710 | . . 3 |
5 | 4 | biimprd 157 | . 2 |
6 | 1, 2, 5 | sylsyld 58 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 |
This theorem is referenced by: a16gb 1845 a16nf 1846 |
Copyright terms: Public domain | W3C validator |