ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbi Unicode version

Theorem abbi 2319
Description: Equivalent wff's correspond to equal class abstractions. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
abbi  |-  ( A. x ( ph  <->  ps )  <->  { x  |  ph }  =  { x  |  ps } )

Proof of Theorem abbi
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2199 . 2  |-  ( { x  |  ph }  =  { x  |  ps } 
<-> 
A. y ( y  e.  { x  | 
ph }  <->  y  e.  { x  |  ps }
) )
2 nfsab1 2195 . . . 4  |-  F/ x  y  e.  { x  |  ph }
3 nfsab1 2195 . . . 4  |-  F/ x  y  e.  { x  |  ps }
42, 3nfbi 1612 . . 3  |-  F/ x
( y  e.  {
x  |  ph }  <->  y  e.  { x  |  ps } )
5 nfv 1551 . . 3  |-  F/ y ( ph  <->  ps )
6 df-clab 2192 . . . . 5  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
7 sbequ12r 1795 . . . . 5  |-  ( y  =  x  ->  ( [ y  /  x ] ph  <->  ph ) )
86, 7bitrid 192 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  ph ) )
9 df-clab 2192 . . . . 5  |-  ( y  e.  { x  |  ps }  <->  [ y  /  x ] ps )
10 sbequ12r 1795 . . . . 5  |-  ( y  =  x  ->  ( [ y  /  x ] ps  <->  ps ) )
119, 10bitrid 192 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x  |  ps }  <->  ps )
)
128, 11bibi12d 235 . . 3  |-  ( y  =  x  ->  (
( y  e.  {
x  |  ph }  <->  y  e.  { x  |  ps } )  <->  ( ph  <->  ps ) ) )
134, 5, 12cbval 1777 . 2  |-  ( A. y ( y  e. 
{ x  |  ph } 
<->  y  e.  { x  |  ps } )  <->  A. x
( ph  <->  ps ) )
141, 13bitr2i 185 1  |-  ( A. x ( ph  <->  ps )  <->  { x  |  ph }  =  { x  |  ps } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371    = wceq 1373   [wsb 1785    e. wcel 2176   {cab 2191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198
This theorem is referenced by:  abbii  2321  abbid  2322  rabbi  2684  sbcbi2  3049  dfiota2  5234  iotabi  5242  uniabio  5243
  Copyright terms: Public domain W3C validator