ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelimab Unicode version

Theorem fvelimab 5689
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
Assertion
Ref Expression
fvelimab  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
Distinct variable groups:    x, B    x, C    x, F
Allowed substitution hint:    A( x)

Proof of Theorem fvelimab
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2811 . . . 4  |-  ( C  e.  ( F " B )  ->  C  e.  _V )
21anim2i 342 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  ( F " B ) )  ->  ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )
)
3 ssel2 3219 . . . . . . . 8  |-  ( ( B  C_  A  /\  u  e.  B )  ->  u  e.  A )
4 funfvex 5643 . . . . . . . . 9  |-  ( ( Fun  F  /\  u  e.  dom  F )  -> 
( F `  u
)  e.  _V )
54funfni 5422 . . . . . . . 8  |-  ( ( F  Fn  A  /\  u  e.  A )  ->  ( F `  u
)  e.  _V )
63, 5sylan2 286 . . . . . . 7  |-  ( ( F  Fn  A  /\  ( B  C_  A  /\  u  e.  B )
)  ->  ( F `  u )  e.  _V )
76anassrs 400 . . . . . 6  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  u  e.  B
)  ->  ( F `  u )  e.  _V )
8 eleq1 2292 . . . . . 6  |-  ( ( F `  u )  =  C  ->  (
( F `  u
)  e.  _V  <->  C  e.  _V ) )
97, 8syl5ibcom 155 . . . . 5  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  u  e.  B
)  ->  ( ( F `  u )  =  C  ->  C  e. 
_V ) )
109rexlimdva 2648 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( E. u  e.  B  ( F `  u )  =  C  ->  C  e.  _V ) )
1110imdistani 445 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  E. u  e.  B  ( F `  u )  =  C )  ->  ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )
)
12 eleq1 2292 . . . . . . 7  |-  ( v  =  C  ->  (
v  e.  ( F
" B )  <->  C  e.  ( F " B ) ) )
13 eqeq2 2239 . . . . . . . 8  |-  ( v  =  C  ->  (
( F `  u
)  =  v  <->  ( F `  u )  =  C ) )
1413rexbidv 2531 . . . . . . 7  |-  ( v  =  C  ->  ( E. u  e.  B  ( F `  u )  =  v  <->  E. u  e.  B  ( F `  u )  =  C ) )
1512, 14bibi12d 235 . . . . . 6  |-  ( v  =  C  ->  (
( v  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  v )  <->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) )
1615imbi2d 230 . . . . 5  |-  ( v  =  C  ->  (
( ( F  Fn  A  /\  B  C_  A
)  ->  ( v  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  v ) )  <-> 
( ( F  Fn  A  /\  B  C_  A
)  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) ) )
17 fnfun 5417 . . . . . . . 8  |-  ( F  Fn  A  ->  Fun  F )
1817adantr 276 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  Fun  F )
19 fndm 5419 . . . . . . . . 9  |-  ( F  Fn  A  ->  dom  F  =  A )
2019sseq2d 3254 . . . . . . . 8  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
2120biimpar 297 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  B  C_  dom  F )
22 dfimafn 5681 . . . . . . 7  |-  ( ( Fun  F  /\  B  C_ 
dom  F )  -> 
( F " B
)  =  { v  |  E. u  e.  B  ( F `  u )  =  v } )
2318, 21, 22syl2anc 411 . . . . . 6  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F " B
)  =  { v  |  E. u  e.  B  ( F `  u )  =  v } )
2423abeq2d 2342 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( v  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  v ) )
2516, 24vtoclg 2861 . . . 4  |-  ( C  e.  _V  ->  (
( F  Fn  A  /\  B  C_  A )  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) )
2625impcom 125 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) )
272, 11, 26pm5.21nd 921 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  C ) )
28 fveq2 5626 . . . 4  |-  ( u  =  x  ->  ( F `  u )  =  ( F `  x ) )
2928eqeq1d 2238 . . 3  |-  ( u  =  x  ->  (
( F `  u
)  =  C  <->  ( F `  x )  =  C ) )
3029cbvrexv 2766 . 2  |-  ( E. u  e.  B  ( F `  u )  =  C  <->  E. x  e.  B  ( F `  x )  =  C )
3127, 30bitrdi 196 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509   _Vcvv 2799    C_ wss 3197   dom cdm 4718   "cima 4721   Fun wfun 5311    Fn wfn 5312   ` cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325
This theorem is referenced by:  ssimaex  5694  foima2  5874  rexima  5877  ralima  5878  f1elima  5896  ovelimab  6155
  Copyright terms: Public domain W3C validator