ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelimab Unicode version

Theorem fvelimab 5658
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
Assertion
Ref Expression
fvelimab  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
Distinct variable groups:    x, B    x, C    x, F
Allowed substitution hint:    A( x)

Proof of Theorem fvelimab
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2788 . . . 4  |-  ( C  e.  ( F " B )  ->  C  e.  _V )
21anim2i 342 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  ( F " B ) )  ->  ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )
)
3 ssel2 3196 . . . . . . . 8  |-  ( ( B  C_  A  /\  u  e.  B )  ->  u  e.  A )
4 funfvex 5616 . . . . . . . . 9  |-  ( ( Fun  F  /\  u  e.  dom  F )  -> 
( F `  u
)  e.  _V )
54funfni 5395 . . . . . . . 8  |-  ( ( F  Fn  A  /\  u  e.  A )  ->  ( F `  u
)  e.  _V )
63, 5sylan2 286 . . . . . . 7  |-  ( ( F  Fn  A  /\  ( B  C_  A  /\  u  e.  B )
)  ->  ( F `  u )  e.  _V )
76anassrs 400 . . . . . 6  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  u  e.  B
)  ->  ( F `  u )  e.  _V )
8 eleq1 2270 . . . . . 6  |-  ( ( F `  u )  =  C  ->  (
( F `  u
)  e.  _V  <->  C  e.  _V ) )
97, 8syl5ibcom 155 . . . . 5  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  u  e.  B
)  ->  ( ( F `  u )  =  C  ->  C  e. 
_V ) )
109rexlimdva 2625 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( E. u  e.  B  ( F `  u )  =  C  ->  C  e.  _V ) )
1110imdistani 445 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  E. u  e.  B  ( F `  u )  =  C )  ->  ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )
)
12 eleq1 2270 . . . . . . 7  |-  ( v  =  C  ->  (
v  e.  ( F
" B )  <->  C  e.  ( F " B ) ) )
13 eqeq2 2217 . . . . . . . 8  |-  ( v  =  C  ->  (
( F `  u
)  =  v  <->  ( F `  u )  =  C ) )
1413rexbidv 2509 . . . . . . 7  |-  ( v  =  C  ->  ( E. u  e.  B  ( F `  u )  =  v  <->  E. u  e.  B  ( F `  u )  =  C ) )
1512, 14bibi12d 235 . . . . . 6  |-  ( v  =  C  ->  (
( v  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  v )  <->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) )
1615imbi2d 230 . . . . 5  |-  ( v  =  C  ->  (
( ( F  Fn  A  /\  B  C_  A
)  ->  ( v  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  v ) )  <-> 
( ( F  Fn  A  /\  B  C_  A
)  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) ) )
17 fnfun 5390 . . . . . . . 8  |-  ( F  Fn  A  ->  Fun  F )
1817adantr 276 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  Fun  F )
19 fndm 5392 . . . . . . . . 9  |-  ( F  Fn  A  ->  dom  F  =  A )
2019sseq2d 3231 . . . . . . . 8  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
2120biimpar 297 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  B  C_  dom  F )
22 dfimafn 5650 . . . . . . 7  |-  ( ( Fun  F  /\  B  C_ 
dom  F )  -> 
( F " B
)  =  { v  |  E. u  e.  B  ( F `  u )  =  v } )
2318, 21, 22syl2anc 411 . . . . . 6  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F " B
)  =  { v  |  E. u  e.  B  ( F `  u )  =  v } )
2423abeq2d 2320 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( v  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  v ) )
2516, 24vtoclg 2838 . . . 4  |-  ( C  e.  _V  ->  (
( F  Fn  A  /\  B  C_  A )  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) )
2625impcom 125 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) )
272, 11, 26pm5.21nd 918 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  C ) )
28 fveq2 5599 . . . 4  |-  ( u  =  x  ->  ( F `  u )  =  ( F `  x ) )
2928eqeq1d 2216 . . 3  |-  ( u  =  x  ->  (
( F `  u
)  =  C  <->  ( F `  x )  =  C ) )
3029cbvrexv 2743 . 2  |-  ( E. u  e.  B  ( F `  u )  =  C  <->  E. x  e.  B  ( F `  x )  =  C )
3127, 30bitrdi 196 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {cab 2193   E.wrex 2487   _Vcvv 2776    C_ wss 3174   dom cdm 4693   "cima 4696   Fun wfun 5284    Fn wfn 5285   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298
This theorem is referenced by:  ssimaex  5663  foima2  5843  rexima  5846  ralima  5847  f1elima  5865  ovelimab  6120
  Copyright terms: Public domain W3C validator