ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelimab Unicode version

Theorem fvelimab 5485
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
Assertion
Ref Expression
fvelimab  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
Distinct variable groups:    x, B    x, C    x, F
Allowed substitution hint:    A( x)

Proof of Theorem fvelimab
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2700 . . . 4  |-  ( C  e.  ( F " B )  ->  C  e.  _V )
21anim2i 340 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  ( F " B ) )  ->  ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )
)
3 ssel2 3097 . . . . . . . 8  |-  ( ( B  C_  A  /\  u  e.  B )  ->  u  e.  A )
4 funfvex 5446 . . . . . . . . 9  |-  ( ( Fun  F  /\  u  e.  dom  F )  -> 
( F `  u
)  e.  _V )
54funfni 5231 . . . . . . . 8  |-  ( ( F  Fn  A  /\  u  e.  A )  ->  ( F `  u
)  e.  _V )
63, 5sylan2 284 . . . . . . 7  |-  ( ( F  Fn  A  /\  ( B  C_  A  /\  u  e.  B )
)  ->  ( F `  u )  e.  _V )
76anassrs 398 . . . . . 6  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  u  e.  B
)  ->  ( F `  u )  e.  _V )
8 eleq1 2203 . . . . . 6  |-  ( ( F `  u )  =  C  ->  (
( F `  u
)  e.  _V  <->  C  e.  _V ) )
97, 8syl5ibcom 154 . . . . 5  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  u  e.  B
)  ->  ( ( F `  u )  =  C  ->  C  e. 
_V ) )
109rexlimdva 2552 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( E. u  e.  B  ( F `  u )  =  C  ->  C  e.  _V ) )
1110imdistani 442 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  E. u  e.  B  ( F `  u )  =  C )  ->  ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )
)
12 eleq1 2203 . . . . . . 7  |-  ( v  =  C  ->  (
v  e.  ( F
" B )  <->  C  e.  ( F " B ) ) )
13 eqeq2 2150 . . . . . . . 8  |-  ( v  =  C  ->  (
( F `  u
)  =  v  <->  ( F `  u )  =  C ) )
1413rexbidv 2439 . . . . . . 7  |-  ( v  =  C  ->  ( E. u  e.  B  ( F `  u )  =  v  <->  E. u  e.  B  ( F `  u )  =  C ) )
1512, 14bibi12d 234 . . . . . 6  |-  ( v  =  C  ->  (
( v  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  v )  <->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) )
1615imbi2d 229 . . . . 5  |-  ( v  =  C  ->  (
( ( F  Fn  A  /\  B  C_  A
)  ->  ( v  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  v ) )  <-> 
( ( F  Fn  A  /\  B  C_  A
)  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) ) )
17 fnfun 5228 . . . . . . . 8  |-  ( F  Fn  A  ->  Fun  F )
1817adantr 274 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  Fun  F )
19 fndm 5230 . . . . . . . . 9  |-  ( F  Fn  A  ->  dom  F  =  A )
2019sseq2d 3132 . . . . . . . 8  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
2120biimpar 295 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  B  C_  dom  F )
22 dfimafn 5478 . . . . . . 7  |-  ( ( Fun  F  /\  B  C_ 
dom  F )  -> 
( F " B
)  =  { v  |  E. u  e.  B  ( F `  u )  =  v } )
2318, 21, 22syl2anc 409 . . . . . 6  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F " B
)  =  { v  |  E. u  e.  B  ( F `  u )  =  v } )
2423abeq2d 2253 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( v  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  v ) )
2516, 24vtoclg 2749 . . . 4  |-  ( C  e.  _V  ->  (
( F  Fn  A  /\  B  C_  A )  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) )
2625impcom 124 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) )
272, 11, 26pm5.21nd 902 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  C ) )
28 fveq2 5429 . . . 4  |-  ( u  =  x  ->  ( F `  u )  =  ( F `  x ) )
2928eqeq1d 2149 . . 3  |-  ( u  =  x  ->  (
( F `  u
)  =  C  <->  ( F `  x )  =  C ) )
3029cbvrexv 2658 . 2  |-  ( E. u  e.  B  ( F `  u )  =  C  <->  E. x  e.  B  ( F `  x )  =  C )
3127, 30syl6bb 195 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   {cab 2126   E.wrex 2418   _Vcvv 2689    C_ wss 3076   dom cdm 4547   "cima 4550   Fun wfun 5125    Fn wfn 5126   ` cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-fv 5139
This theorem is referenced by:  ssimaex  5490  foima2  5661  rexima  5664  ralima  5665  f1elima  5682  ovelimab  5929
  Copyright terms: Public domain W3C validator