| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvelimab | Unicode version | ||
| Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.) |
| Ref | Expression |
|---|---|
| fvelimab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. . . 4
| |
| 2 | 1 | anim2i 342 |
. . 3
|
| 3 | ssel2 3196 |
. . . . . . . 8
| |
| 4 | funfvex 5616 |
. . . . . . . . 9
| |
| 5 | 4 | funfni 5395 |
. . . . . . . 8
|
| 6 | 3, 5 | sylan2 286 |
. . . . . . 7
|
| 7 | 6 | anassrs 400 |
. . . . . 6
|
| 8 | eleq1 2270 |
. . . . . 6
| |
| 9 | 7, 8 | syl5ibcom 155 |
. . . . 5
|
| 10 | 9 | rexlimdva 2625 |
. . . 4
|
| 11 | 10 | imdistani 445 |
. . 3
|
| 12 | eleq1 2270 |
. . . . . . 7
| |
| 13 | eqeq2 2217 |
. . . . . . . 8
| |
| 14 | 13 | rexbidv 2509 |
. . . . . . 7
|
| 15 | 12, 14 | bibi12d 235 |
. . . . . 6
|
| 16 | 15 | imbi2d 230 |
. . . . 5
|
| 17 | fnfun 5390 |
. . . . . . . 8
| |
| 18 | 17 | adantr 276 |
. . . . . . 7
|
| 19 | fndm 5392 |
. . . . . . . . 9
| |
| 20 | 19 | sseq2d 3231 |
. . . . . . . 8
|
| 21 | 20 | biimpar 297 |
. . . . . . 7
|
| 22 | dfimafn 5650 |
. . . . . . 7
| |
| 23 | 18, 21, 22 | syl2anc 411 |
. . . . . 6
|
| 24 | 23 | abeq2d 2320 |
. . . . 5
|
| 25 | 16, 24 | vtoclg 2838 |
. . . 4
|
| 26 | 25 | impcom 125 |
. . 3
|
| 27 | 2, 11, 26 | pm5.21nd 918 |
. 2
|
| 28 | fveq2 5599 |
. . . 4
| |
| 29 | 28 | eqeq1d 2216 |
. . 3
|
| 30 | 29 | cbvrexv 2743 |
. 2
|
| 31 | 27, 30 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: ssimaex 5663 foima2 5843 rexima 5846 ralima 5847 f1elima 5865 ovelimab 6120 |
| Copyright terms: Public domain | W3C validator |