ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelimab Unicode version

Theorem fvelimab 5620
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
Assertion
Ref Expression
fvelimab  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
Distinct variable groups:    x, B    x, C    x, F
Allowed substitution hint:    A( x)

Proof of Theorem fvelimab
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2774 . . . 4  |-  ( C  e.  ( F " B )  ->  C  e.  _V )
21anim2i 342 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  ( F " B ) )  ->  ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )
)
3 ssel2 3179 . . . . . . . 8  |-  ( ( B  C_  A  /\  u  e.  B )  ->  u  e.  A )
4 funfvex 5578 . . . . . . . . 9  |-  ( ( Fun  F  /\  u  e.  dom  F )  -> 
( F `  u
)  e.  _V )
54funfni 5361 . . . . . . . 8  |-  ( ( F  Fn  A  /\  u  e.  A )  ->  ( F `  u
)  e.  _V )
63, 5sylan2 286 . . . . . . 7  |-  ( ( F  Fn  A  /\  ( B  C_  A  /\  u  e.  B )
)  ->  ( F `  u )  e.  _V )
76anassrs 400 . . . . . 6  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  u  e.  B
)  ->  ( F `  u )  e.  _V )
8 eleq1 2259 . . . . . 6  |-  ( ( F `  u )  =  C  ->  (
( F `  u
)  e.  _V  <->  C  e.  _V ) )
97, 8syl5ibcom 155 . . . . 5  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  u  e.  B
)  ->  ( ( F `  u )  =  C  ->  C  e. 
_V ) )
109rexlimdva 2614 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( E. u  e.  B  ( F `  u )  =  C  ->  C  e.  _V ) )
1110imdistani 445 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  E. u  e.  B  ( F `  u )  =  C )  ->  ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )
)
12 eleq1 2259 . . . . . . 7  |-  ( v  =  C  ->  (
v  e.  ( F
" B )  <->  C  e.  ( F " B ) ) )
13 eqeq2 2206 . . . . . . . 8  |-  ( v  =  C  ->  (
( F `  u
)  =  v  <->  ( F `  u )  =  C ) )
1413rexbidv 2498 . . . . . . 7  |-  ( v  =  C  ->  ( E. u  e.  B  ( F `  u )  =  v  <->  E. u  e.  B  ( F `  u )  =  C ) )
1512, 14bibi12d 235 . . . . . 6  |-  ( v  =  C  ->  (
( v  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  v )  <->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) )
1615imbi2d 230 . . . . 5  |-  ( v  =  C  ->  (
( ( F  Fn  A  /\  B  C_  A
)  ->  ( v  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  v ) )  <-> 
( ( F  Fn  A  /\  B  C_  A
)  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) ) )
17 fnfun 5356 . . . . . . . 8  |-  ( F  Fn  A  ->  Fun  F )
1817adantr 276 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  Fun  F )
19 fndm 5358 . . . . . . . . 9  |-  ( F  Fn  A  ->  dom  F  =  A )
2019sseq2d 3214 . . . . . . . 8  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
2120biimpar 297 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  B  C_  dom  F )
22 dfimafn 5612 . . . . . . 7  |-  ( ( Fun  F  /\  B  C_ 
dom  F )  -> 
( F " B
)  =  { v  |  E. u  e.  B  ( F `  u )  =  v } )
2318, 21, 22syl2anc 411 . . . . . 6  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F " B
)  =  { v  |  E. u  e.  B  ( F `  u )  =  v } )
2423abeq2d 2309 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( v  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  v ) )
2516, 24vtoclg 2824 . . . 4  |-  ( C  e.  _V  ->  (
( F  Fn  A  /\  B  C_  A )  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) )
2625impcom 125 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) )
272, 11, 26pm5.21nd 917 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  C ) )
28 fveq2 5561 . . . 4  |-  ( u  =  x  ->  ( F `  u )  =  ( F `  x ) )
2928eqeq1d 2205 . . 3  |-  ( u  =  x  ->  (
( F `  u
)  =  C  <->  ( F `  x )  =  C ) )
3029cbvrexv 2730 . 2  |-  ( E. u  e.  B  ( F `  u )  =  C  <->  E. x  e.  B  ( F `  x )  =  C )
3127, 30bitrdi 196 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {cab 2182   E.wrex 2476   _Vcvv 2763    C_ wss 3157   dom cdm 4664   "cima 4667   Fun wfun 5253    Fn wfn 5254   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267
This theorem is referenced by:  ssimaex  5625  foima2  5801  rexima  5804  ralima  5805  f1elima  5823  ovelimab  6078
  Copyright terms: Public domain W3C validator