Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvelimab | Unicode version |
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.) |
Ref | Expression |
---|---|
fvelimab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . . 4 | |
2 | 1 | anim2i 340 | . . 3 |
3 | ssel2 3137 | . . . . . . . 8 | |
4 | funfvex 5503 | . . . . . . . . 9 | |
5 | 4 | funfni 5288 | . . . . . . . 8 |
6 | 3, 5 | sylan2 284 | . . . . . . 7 |
7 | 6 | anassrs 398 | . . . . . 6 |
8 | eleq1 2229 | . . . . . 6 | |
9 | 7, 8 | syl5ibcom 154 | . . . . 5 |
10 | 9 | rexlimdva 2583 | . . . 4 |
11 | 10 | imdistani 442 | . . 3 |
12 | eleq1 2229 | . . . . . . 7 | |
13 | eqeq2 2175 | . . . . . . . 8 | |
14 | 13 | rexbidv 2467 | . . . . . . 7 |
15 | 12, 14 | bibi12d 234 | . . . . . 6 |
16 | 15 | imbi2d 229 | . . . . 5 |
17 | fnfun 5285 | . . . . . . . 8 | |
18 | 17 | adantr 274 | . . . . . . 7 |
19 | fndm 5287 | . . . . . . . . 9 | |
20 | 19 | sseq2d 3172 | . . . . . . . 8 |
21 | 20 | biimpar 295 | . . . . . . 7 |
22 | dfimafn 5535 | . . . . . . 7 | |
23 | 18, 21, 22 | syl2anc 409 | . . . . . 6 |
24 | 23 | abeq2d 2279 | . . . . 5 |
25 | 16, 24 | vtoclg 2786 | . . . 4 |
26 | 25 | impcom 124 | . . 3 |
27 | 2, 11, 26 | pm5.21nd 906 | . 2 |
28 | fveq2 5486 | . . . 4 | |
29 | 28 | eqeq1d 2174 | . . 3 |
30 | 29 | cbvrexv 2693 | . 2 |
31 | 27, 30 | bitrdi 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cab 2151 wrex 2445 cvv 2726 wss 3116 cdm 4604 cima 4607 wfun 5182 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: ssimaex 5547 foima2 5720 rexima 5723 ralima 5724 f1elima 5741 ovelimab 5992 |
Copyright terms: Public domain | W3C validator |