ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq2d GIF version

Theorem abeq2d 2309
Description: Equality of a class variable and a class abstraction (deduction). (Contributed by NM, 16-Nov-1995.)
Hypothesis
Ref Expression
abeqd.1 (𝜑𝐴 = {𝑥𝜓})
Assertion
Ref Expression
abeq2d (𝜑 → (𝑥𝐴𝜓))

Proof of Theorem abeq2d
StepHypRef Expression
1 abeqd.1 . . 3 (𝜑𝐴 = {𝑥𝜓})
21eleq2d 2266 . 2 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝜓}))
3 abid 2184 . 2 (𝑥 ∈ {𝑥𝜓} ↔ 𝜓)
42, 3bitrdi 196 1 (𝜑 → (𝑥𝐴𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192
This theorem is referenced by:  fvelimab  5617  frecsuclem  6464
  Copyright terms: Public domain W3C validator