![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abeq2d | GIF version |
Description: Equality of a class variable and a class abstraction (deduction). (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
abeqd.1 | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Ref | Expression |
---|---|
abeq2d | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) | |
2 | 1 | eleq2d 2257 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜓})) |
3 | abid 2175 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓) | |
4 | 2, 3 | bitrdi 196 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1363 ∈ wcel 2158 {cab 2173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 |
This theorem is referenced by: fvelimab 5585 frecsuclem 6421 |
Copyright terms: Public domain | W3C validator |