ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq2d GIF version

Theorem abeq2d 2290
Description: Equality of a class variable and a class abstraction (deduction). (Contributed by NM, 16-Nov-1995.)
Hypothesis
Ref Expression
abeqd.1 (𝜑𝐴 = {𝑥𝜓})
Assertion
Ref Expression
abeq2d (𝜑 → (𝑥𝐴𝜓))

Proof of Theorem abeq2d
StepHypRef Expression
1 abeqd.1 . . 3 (𝜑𝐴 = {𝑥𝜓})
21eleq2d 2247 . 2 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝜓}))
3 abid 2165 . 2 (𝑥 ∈ {𝑥𝜓} ↔ 𝜓)
42, 3bitrdi 196 1 (𝜑 → (𝑥𝐴𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wcel 2148  {cab 2163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173
This theorem is referenced by:  fvelimab  5573  frecsuclem  6407
  Copyright terms: Public domain W3C validator