| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abeq2d | GIF version | ||
| Description: Equality of a class variable and a class abstraction (deduction). (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| abeqd.1 | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| Ref | Expression |
|---|---|
| abeq2d | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) | |
| 2 | 1 | eleq2d 2274 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜓})) |
| 3 | abid 2192 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓) | |
| 4 | 2, 3 | bitrdi 196 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 {cab 2190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: fvelimab 5629 frecsuclem 6482 |
| Copyright terms: Public domain | W3C validator |