ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3impdi Unicode version

Theorem 3impdi 1271
Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
3impdi.1  |-  ( ( ( ph  /\  ps )  /\  ( ph  /\  ch ) )  ->  th )
Assertion
Ref Expression
3impdi  |-  ( (
ph  /\  ps  /\  ch )  ->  th )

Proof of Theorem 3impdi
StepHypRef Expression
1 3impdi.1 . . 3  |-  ( ( ( ph  /\  ps )  /\  ( ph  /\  ch ) )  ->  th )
21anandis 581 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
323impb 1177 1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 964
This theorem is referenced by:  ecovdi  6540  ecovidi  6541  distrpig  7153  mulcanenq  7205  mulcanenq0ec  7265  distrnq0  7279  axltadd  7846  absmulgcd  11716
  Copyright terms: Public domain W3C validator