Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltmpig | Unicode version |
Description: Ordering property of multiplication for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.) |
Ref | Expression |
---|---|
ltmpig |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7250 | . . . . 5 | |
2 | pinn 7250 | . . . . 5 | |
3 | elni2 7255 | . . . . . 6 | |
4 | iba 298 | . . . . . . . . 9 | |
5 | nnmord 6485 | . . . . . . . . 9 | |
6 | 4, 5 | sylan9bbr 459 | . . . . . . . 8 |
7 | 6 | 3exp1 1213 | . . . . . . 7 |
8 | 7 | imp4b 348 | . . . . . 6 |
9 | 3, 8 | syl5bi 151 | . . . . 5 |
10 | 1, 2, 9 | syl2an 287 | . . . 4 |
11 | 10 | imp 123 | . . 3 |
12 | ltpiord 7260 | . . . 4 | |
13 | 12 | adantr 274 | . . 3 |
14 | mulclpi 7269 | . . . . . . 7 | |
15 | mulclpi 7269 | . . . . . . 7 | |
16 | ltpiord 7260 | . . . . . . 7 | |
17 | 14, 15, 16 | syl2an 287 | . . . . . 6 |
18 | mulpiord 7258 | . . . . . . . 8 | |
19 | 18 | adantr 274 | . . . . . . 7 |
20 | mulpiord 7258 | . . . . . . . 8 | |
21 | 20 | adantl 275 | . . . . . . 7 |
22 | 19, 21 | eleq12d 2237 | . . . . . 6 |
23 | 17, 22 | bitrd 187 | . . . . 5 |
24 | 23 | anandis 582 | . . . 4 |
25 | 24 | ancoms 266 | . . 3 |
26 | 11, 13, 25 | 3bitr4d 219 | . 2 |
27 | 26 | 3impa 1184 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 c0 3409 class class class wbr 3982 com 4567 (class class class)co 5842 comu 6382 cnpi 7213 cmi 7215 clti 7216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 df-ni 7245 df-mi 7247 df-lti 7248 |
This theorem is referenced by: ordpipqqs 7315 ltsonq 7339 ltanqg 7341 ltmnqg 7342 1lt2nq 7347 |
Copyright terms: Public domain | W3C validator |