ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmpig Unicode version

Theorem ltmpig 7452
Description: Ordering property of multiplication for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
ltmpig  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  <N  B  <->  ( C  .N  A )  <N  ( C  .N  B ) ) )

Proof of Theorem ltmpig
StepHypRef Expression
1 pinn 7422 . . . . 5  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 7422 . . . . 5  |-  ( B  e.  N.  ->  B  e.  om )
3 elni2 7427 . . . . . 6  |-  ( C  e.  N.  <->  ( C  e.  om  /\  (/)  e.  C
) )
4 iba 300 . . . . . . . . 9  |-  ( (/)  e.  C  ->  ( A  e.  B  <->  ( A  e.  B  /\  (/)  e.  C
) ) )
5 nnmord 6603 . . . . . . . . 9  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )
64, 5sylan9bbr 463 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
763exp1 1226 . . . . . . 7  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( C  e.  om  ->  (
(/)  e.  C  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) ) )
87imp4b 350 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( C  e. 
om  /\  (/)  e.  C
)  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
93, 8biimtrid 152 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( C  e.  N.  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
101, 2, 9syl2an 289 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( C  e.  N.  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
1110imp 124 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
12 ltpiord 7432 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )
1312adantr 276 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  <N  B  <-> 
A  e.  B ) )
14 mulclpi 7441 . . . . . . 7  |-  ( ( C  e.  N.  /\  A  e.  N. )  ->  ( C  .N  A
)  e.  N. )
15 mulclpi 7441 . . . . . . 7  |-  ( ( C  e.  N.  /\  B  e.  N. )  ->  ( C  .N  B
)  e.  N. )
16 ltpiord 7432 . . . . . . 7  |-  ( ( ( C  .N  A
)  e.  N.  /\  ( C  .N  B
)  e.  N. )  ->  ( ( C  .N  A )  <N  ( C  .N  B )  <->  ( C  .N  A )  e.  ( C  .N  B ) ) )
1714, 15, 16syl2an 289 . . . . . 6  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .N  A )  e.  ( C  .N  B ) ) )
18 mulpiord 7430 . . . . . . . 8  |-  ( ( C  e.  N.  /\  A  e.  N. )  ->  ( C  .N  A
)  =  ( C  .o  A ) )
1918adantr 276 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( C  .N  A )  =  ( C  .o  A ) )
20 mulpiord 7430 . . . . . . . 8  |-  ( ( C  e.  N.  /\  B  e.  N. )  ->  ( C  .N  B
)  =  ( C  .o  B ) )
2120adantl 277 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( C  .N  B )  =  ( C  .o  B ) )
2219, 21eleq12d 2276 . . . . . 6  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  e.  ( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2317, 22bitrd 188 . . . . 5  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2423anandis 592 . . . 4  |-  ( ( C  e.  N.  /\  ( A  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2524ancoms 268 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2611, 13, 253bitr4d 220 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  <N  B  <-> 
( C  .N  A
)  <N  ( C  .N  B ) ) )
27263impa 1197 1  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  <N  B  <->  ( C  .N  A )  <N  ( C  .N  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   (/)c0 3460   class class class wbr 4044   omcom 4638  (class class class)co 5944    .o comu 6500   N.cnpi 7385    .N cmi 7387    <N clti 7388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-oadd 6506  df-omul 6507  df-ni 7417  df-mi 7419  df-lti 7420
This theorem is referenced by:  ordpipqqs  7487  ltsonq  7511  ltanqg  7513  ltmnqg  7514  1lt2nq  7519
  Copyright terms: Public domain W3C validator