ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmpig Unicode version

Theorem ltmpig 7373
Description: Ordering property of multiplication for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
ltmpig  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  <N  B  <->  ( C  .N  A )  <N  ( C  .N  B ) ) )

Proof of Theorem ltmpig
StepHypRef Expression
1 pinn 7343 . . . . 5  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 7343 . . . . 5  |-  ( B  e.  N.  ->  B  e.  om )
3 elni2 7348 . . . . . 6  |-  ( C  e.  N.  <->  ( C  e.  om  /\  (/)  e.  C
) )
4 iba 300 . . . . . . . . 9  |-  ( (/)  e.  C  ->  ( A  e.  B  <->  ( A  e.  B  /\  (/)  e.  C
) ) )
5 nnmord 6546 . . . . . . . . 9  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )
64, 5sylan9bbr 463 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
763exp1 1225 . . . . . . 7  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( C  e.  om  ->  (
(/)  e.  C  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) ) )
87imp4b 350 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( C  e. 
om  /\  (/)  e.  C
)  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
93, 8biimtrid 152 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( C  e.  N.  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
101, 2, 9syl2an 289 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( C  e.  N.  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
1110imp 124 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
12 ltpiord 7353 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )
1312adantr 276 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  <N  B  <-> 
A  e.  B ) )
14 mulclpi 7362 . . . . . . 7  |-  ( ( C  e.  N.  /\  A  e.  N. )  ->  ( C  .N  A
)  e.  N. )
15 mulclpi 7362 . . . . . . 7  |-  ( ( C  e.  N.  /\  B  e.  N. )  ->  ( C  .N  B
)  e.  N. )
16 ltpiord 7353 . . . . . . 7  |-  ( ( ( C  .N  A
)  e.  N.  /\  ( C  .N  B
)  e.  N. )  ->  ( ( C  .N  A )  <N  ( C  .N  B )  <->  ( C  .N  A )  e.  ( C  .N  B ) ) )
1714, 15, 16syl2an 289 . . . . . 6  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .N  A )  e.  ( C  .N  B ) ) )
18 mulpiord 7351 . . . . . . . 8  |-  ( ( C  e.  N.  /\  A  e.  N. )  ->  ( C  .N  A
)  =  ( C  .o  A ) )
1918adantr 276 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( C  .N  A )  =  ( C  .o  A ) )
20 mulpiord 7351 . . . . . . . 8  |-  ( ( C  e.  N.  /\  B  e.  N. )  ->  ( C  .N  B
)  =  ( C  .o  B ) )
2120adantl 277 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( C  .N  B )  =  ( C  .o  B ) )
2219, 21eleq12d 2260 . . . . . 6  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  e.  ( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2317, 22bitrd 188 . . . . 5  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2423anandis 592 . . . 4  |-  ( ( C  e.  N.  /\  ( A  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2524ancoms 268 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2611, 13, 253bitr4d 220 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  <N  B  <-> 
( C  .N  A
)  <N  ( C  .N  B ) ) )
27263impa 1196 1  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  <N  B  <->  ( C  .N  A )  <N  ( C  .N  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   (/)c0 3437   class class class wbr 4021   omcom 4610  (class class class)co 5900    .o comu 6443   N.cnpi 7306    .N cmi 7308    <N clti 7309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-eprel 4310  df-id 4314  df-iord 4387  df-on 4389  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-irdg 6399  df-oadd 6449  df-omul 6450  df-ni 7338  df-mi 7340  df-lti 7341
This theorem is referenced by:  ordpipqqs  7408  ltsonq  7432  ltanqg  7434  ltmnqg  7435  1lt2nq  7440
  Copyright terms: Public domain W3C validator