ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  faclbnd Unicode version

Theorem faclbnd 10752
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )

Proof of Theorem faclbnd
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9207 . 2  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
2 oveq1 5902 . . . . . . . 8  |-  ( j  =  0  ->  (
j  +  1 )  =  ( 0  +  1 ) )
32oveq2d 5911 . . . . . . 7  |-  ( j  =  0  ->  ( M ^ ( j  +  1 ) )  =  ( M ^ (
0  +  1 ) ) )
4 fveq2 5534 . . . . . . . 8  |-  ( j  =  0  ->  ( ! `  j )  =  ( ! ` 
0 ) )
54oveq2d 5911 . . . . . . 7  |-  ( j  =  0  ->  (
( M ^ M
)  x.  ( ! `
 j ) )  =  ( ( M ^ M )  x.  ( ! `  0
) ) )
63, 5breq12d 4031 . . . . . 6  |-  ( j  =  0  ->  (
( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) )  <->  ( M ^ ( 0  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  0 )
) ) )
76imbi2d 230 . . . . 5  |-  ( j  =  0  ->  (
( M  e.  NN  ->  ( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) ) )  <->  ( M  e.  NN  ->  ( M ^ ( 0  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  0 )
) ) ) )
8 oveq1 5902 . . . . . . . 8  |-  ( j  =  k  ->  (
j  +  1 )  =  ( k  +  1 ) )
98oveq2d 5911 . . . . . . 7  |-  ( j  =  k  ->  ( M ^ ( j  +  1 ) )  =  ( M ^ (
k  +  1 ) ) )
10 fveq2 5534 . . . . . . . 8  |-  ( j  =  k  ->  ( ! `  j )  =  ( ! `  k ) )
1110oveq2d 5911 . . . . . . 7  |-  ( j  =  k  ->  (
( M ^ M
)  x.  ( ! `
 j ) )  =  ( ( M ^ M )  x.  ( ! `  k
) ) )
129, 11breq12d 4031 . . . . . 6  |-  ( j  =  k  ->  (
( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) )  <->  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) ) )
1312imbi2d 230 . . . . 5  |-  ( j  =  k  ->  (
( M  e.  NN  ->  ( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) ) )  <->  ( M  e.  NN  ->  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) ) ) )
14 oveq1 5902 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  (
j  +  1 )  =  ( ( k  +  1 )  +  1 ) )
1514oveq2d 5911 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( M ^ ( j  +  1 ) )  =  ( M ^ (
( k  +  1 )  +  1 ) ) )
16 fveq2 5534 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  ( ! `  j )  =  ( ! `  ( k  +  1 ) ) )
1716oveq2d 5911 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
( M ^ M
)  x.  ( ! `
 j ) )  =  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) )
1815, 17breq12d 4031 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) )  <->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) )
1918imbi2d 230 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( M  e.  NN  ->  ( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) ) )  <->  ( M  e.  NN  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) ) )
20 oveq1 5902 . . . . . . . 8  |-  ( j  =  N  ->  (
j  +  1 )  =  ( N  + 
1 ) )
2120oveq2d 5911 . . . . . . 7  |-  ( j  =  N  ->  ( M ^ ( j  +  1 ) )  =  ( M ^ ( N  +  1 ) ) )
22 fveq2 5534 . . . . . . . 8  |-  ( j  =  N  ->  ( ! `  j )  =  ( ! `  N ) )
2322oveq2d 5911 . . . . . . 7  |-  ( j  =  N  ->  (
( M ^ M
)  x.  ( ! `
 j ) )  =  ( ( M ^ M )  x.  ( ! `  N
) ) )
2421, 23breq12d 4031 . . . . . 6  |-  ( j  =  N  ->  (
( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) )  <->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
2524imbi2d 230 . . . . 5  |-  ( j  =  N  ->  (
( M  e.  NN  ->  ( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) ) )  <->  ( M  e.  NN  ->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) ) )
26 nnre 8955 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  RR )
27 nnge1 8971 . . . . . . 7  |-  ( M  e.  NN  ->  1  <_  M )
28 elnnuz 9593 . . . . . . . 8  |-  ( M  e.  NN  <->  M  e.  ( ZZ>= `  1 )
)
2928biimpi 120 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  ( ZZ>= `  1 )
)
3026, 27, 29leexp2ad 10713 . . . . . 6  |-  ( M  e.  NN  ->  ( M ^ 1 )  <_ 
( M ^ M
) )
31 0p1e1 9062 . . . . . . . 8  |-  ( 0  +  1 )  =  1
3231oveq2i 5906 . . . . . . 7  |-  ( M ^ ( 0  +  1 ) )  =  ( M ^ 1 )
3332a1i 9 . . . . . 6  |-  ( M  e.  NN  ->  ( M ^ ( 0  +  1 ) )  =  ( M ^ 1 ) )
34 fac0 10739 . . . . . . . 8  |-  ( ! `
 0 )  =  1
3534oveq2i 5906 . . . . . . 7  |-  ( ( M ^ M )  x.  ( ! ` 
0 ) )  =  ( ( M ^ M )  x.  1 )
36 nnnn0 9212 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  NN0 )
3726, 36reexpcld 10701 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( M ^ M )  e.  RR )
3837recnd 8015 . . . . . . . 8  |-  ( M  e.  NN  ->  ( M ^ M )  e.  CC )
3938mulridd 8003 . . . . . . 7  |-  ( M  e.  NN  ->  (
( M ^ M
)  x.  1 )  =  ( M ^ M ) )
4035, 39eqtrid 2234 . . . . . 6  |-  ( M  e.  NN  ->  (
( M ^ M
)  x.  ( ! `
 0 ) )  =  ( M ^ M ) )
4130, 33, 403brtr4d 4050 . . . . 5  |-  ( M  e.  NN  ->  ( M ^ ( 0  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  0 )
) )
4226ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  M  e.  RR )
43 simpllr 534 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  k  e.  NN0 )
44 peano2nn0 9245 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
4543, 44syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( k  +  1 )  e. 
NN0 )
4642, 45reexpcld 10701 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( M ^ ( k  +  1 ) )  e.  RR )
4736ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  M  e.  NN0 )
4842, 47reexpcld 10701 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( M ^ M )  e.  RR )
4943faccld 10747 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( ! `  k )  e.  NN )
5049nnred 8961 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( ! `  k )  e.  RR )
5148, 50remulcld 8017 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( ( M ^ M )  x.  ( ! `  k
) )  e.  RR )
52 nn0re 9214 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  k  e.  RR )
53 peano2re 8122 . . . . . . . . . . . . . 14  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
5443, 52, 533syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  RR )
55 nngt0 8973 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  0  <  M )
5655ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  0  <  M )
57 0re 7986 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
58 ltle 8074 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  M  e.  RR )  ->  ( 0  <  M  ->  0  <_  M )
)
5957, 58mpan 424 . . . . . . . . . . . . . . 15  |-  ( M  e.  RR  ->  (
0  <  M  ->  0  <_  M ) )
6042, 56, 59sylc 62 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  0  <_  M )
6142, 45, 60expge0d 10702 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  0  <_  ( M ^ ( k  +  1 ) ) )
62 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )
63 simprr 531 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  M  <_  ( k  +  1 ) )
6446, 51, 42, 54, 61, 60, 62, 63lemul12ad 8928 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( ( M ^ ( k  +  1 ) )  x.  M )  <_  (
( ( M ^ M )  x.  ( ! `  k )
)  x.  ( k  +  1 ) ) )
6564anandis 592 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  /\  M  <_  (
k  +  1 ) ) )  ->  (
( M ^ (
k  +  1 ) )  x.  M )  <_  ( ( ( M ^ M )  x.  ( ! `  k ) )  x.  ( k  +  1 ) ) )
66 nncn 8956 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  M  e.  CC )
67 expp1 10557 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  =  ( ( M ^ ( k  +  1 ) )  x.  M ) )
6866, 44, 67syl2an 289 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M ^ (
( k  +  1 )  +  1 ) )  =  ( ( M ^ ( k  +  1 ) )  x.  M ) )
6968adantr 276 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  /\  M  <_  (
k  +  1 ) ) )  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  =  ( ( M ^
( k  +  1 ) )  x.  M
) )
70 facp1 10741 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
7170adantl 277 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  (
k  +  1 ) )  =  ( ( ! `  k )  x.  ( k  +  1 ) ) )
7271oveq2d 5911 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  =  ( ( M ^ M )  x.  ( ( ! `
 k )  x.  ( k  +  1 ) ) ) )
7338adantr 276 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M ^ M
)  e.  CC )
74 faccl 10746 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
7574nncnd 8962 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  CC )
7675adantl 277 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  CC )
77 nn0cn 9215 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  k  e.  CC )
78 peano2cn 8121 . . . . . . . . . . . . . . . 16  |-  ( k  e.  CC  ->  (
k  +  1 )  e.  CC )
7977, 78syl 14 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  CC )
8079adantl 277 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  CC )
8173, 76, 80mulassd 8010 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( M ^ M )  x.  ( ! `  k
) )  x.  (
k  +  1 ) )  =  ( ( M ^ M )  x.  ( ( ! `
 k )  x.  ( k  +  1 ) ) ) )
8272, 81eqtr4d 2225 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  =  ( ( ( M ^ M
)  x.  ( ! `
 k ) )  x.  ( k  +  1 ) ) )
8382adantr 276 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  /\  M  <_  (
k  +  1 ) ) )  ->  (
( M ^ M
)  x.  ( ! `
 ( k  +  1 ) ) )  =  ( ( ( M ^ M )  x.  ( ! `  k ) )  x.  ( k  +  1 ) ) )
8465, 69, 833brtr4d 4050 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  /\  M  <_  (
k  +  1 ) ) )  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) )
8584exp32 365 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  ->  ( M  <_ 
( k  +  1 )  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) ) )
8685com23 78 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M  <_  (
k  +  1 )  ->  ( ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
)  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) ) )
87 nn0ltp1le 9344 . . . . . . . . . . 11  |-  ( ( ( k  +  1 )  e.  NN0  /\  M  e.  NN0 )  -> 
( ( k  +  1 )  <  M  <->  ( ( k  +  1 )  +  1 )  <_  M ) )
8844, 36, 87syl2anr 290 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( k  +  1 )  <  M  <->  ( ( k  +  1 )  +  1 )  <_  M ) )
89 peano2nn0 9245 . . . . . . . . . . . . . . 15  |-  ( ( k  +  1 )  e.  NN0  ->  ( ( k  +  1 )  +  1 )  e. 
NN0 )
9044, 89syl 14 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ( k  +  1 )  +  1 )  e. 
NN0 )
91 reexpcl 10567 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  ( ( k  +  1 )  +  1 )  e.  NN0 )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  e.  RR )
9226, 90, 91syl2an 289 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M ^ (
( k  +  1 )  +  1 ) )  e.  RR )
9392adantr 276 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  e.  RR )
9437ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ M
)  e.  RR )
9544faccld 10747 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  NN )
9695nnred 8961 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  RR )
97 remulcl 7968 . . . . . . . . . . . . . 14  |-  ( ( ( M ^ M
)  e.  RR  /\  ( ! `  ( k  +  1 ) )  e.  RR )  -> 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  e.  RR )
9837, 96, 97syl2an 289 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  e.  RR )
9998adantr 276 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  e.  RR )
10026ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  M  e.  RR )
10127ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  1  <_  M )
102 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( ( k  +  1 )  +  1 )  <_  M )
10390ad2antlr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( ( k  +  1 )  +  1 )  e.  NN0 )
104103nn0zd 9402 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( ( k  +  1 )  +  1 )  e.  ZZ )
105 nnz 9301 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  M  e.  ZZ )
106105ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  M  e.  ZZ )
107 eluz 9570 . . . . . . . . . . . . . . 15  |-  ( ( ( ( k  +  1 )  +  1 )  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  e.  (
ZZ>= `  ( ( k  +  1 )  +  1 ) )  <->  ( (
k  +  1 )  +  1 )  <_  M ) )
108104, 106, 107syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M  e.  (
ZZ>= `  ( ( k  +  1 )  +  1 ) )  <->  ( (
k  +  1 )  +  1 )  <_  M ) )
109102, 108mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  M  e.  ( ZZ>= `  ( ( k  +  1 )  +  1 ) ) )
110100, 101, 109leexp2ad 10713 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( M ^ M ) )
11137, 96anim12i 338 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^ M )  e.  RR  /\  ( ! `  (
k  +  1 ) )  e.  RR ) )
112 nn0re 9214 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  ->  M  e.  RR )
113 id 19 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  ->  M  e. 
NN0 )
114 nn0ge0 9230 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  ->  0  <_  M )
115112, 113, 114expge0d 10702 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN0  ->  0  <_ 
( M ^ M
) )
11636, 115syl 14 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  0  <_  ( M ^ M
) )
11795nnge1d 8991 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  1  <_ 
( ! `  (
k  +  1 ) ) )
118116, 117anim12i 338 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( 0  <_  ( M ^ M )  /\  1  <_  ( ! `  ( k  +  1 ) ) ) )
119 lemulge11 8852 . . . . . . . . . . . . . 14  |-  ( ( ( ( M ^ M )  e.  RR  /\  ( ! `  (
k  +  1 ) )  e.  RR )  /\  ( 0  <_ 
( M ^ M
)  /\  1  <_  ( ! `  ( k  +  1 ) ) ) )  ->  ( M ^ M )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) )
120111, 118, 119syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M ^ M
)  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) )
121120adantr 276 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ M
)  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) )
12293, 94, 99, 110, 121letrd 8110 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) )
123122ex 115 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( k  +  1 )  +  1 )  <_  M  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) ) )
12488, 123sylbid 150 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( k  +  1 )  <  M  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) ) )
125124a1dd 48 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( k  +  1 )  <  M  ->  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  ->  ( M ^
( ( k  +  1 )  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 ( k  +  1 ) ) ) ) ) )
126105adantr 276 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  ->  M  e.  ZZ )
12744adantl 277 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  NN0 )
128127nn0zd 9402 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  ZZ )
129 zlelttric 9327 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( M  <_ 
( k  +  1 )  \/  ( k  +  1 )  < 
M ) )
130126, 128, 129syl2anc 411 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M  <_  (
k  +  1 )  \/  ( k  +  1 )  <  M
) )
13186, 125, 130mpjaod 719 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  ->  ( M ^
( ( k  +  1 )  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 ( k  +  1 ) ) ) ) )
132131expcom 116 . . . . . 6  |-  ( k  e.  NN0  ->  ( M  e.  NN  ->  (
( M ^ (
k  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  k
) )  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) ) )
133132a2d 26 . . . . 5  |-  ( k  e.  NN0  ->  ( ( M  e.  NN  ->  ( M ^ ( k  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  k
) ) )  -> 
( M  e.  NN  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) ) ) )
1347, 13, 19, 25, 41, 133nn0ind 9396 . . . 4  |-  ( N  e.  NN0  ->  ( M  e.  NN  ->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
135134impcom 125 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
136 faccl 10746 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
137136nnnn0d 9258 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e. 
NN0 )
138137nn0ge0d 9261 . . . . . 6  |-  ( N  e.  NN0  ->  0  <_ 
( ! `  N
) )
139 nn0p1nn 9244 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
1401390expd 10700 . . . . . 6  |-  ( N  e.  NN0  ->  ( 0 ^ ( N  + 
1 ) )  =  0 )
141 0exp0e1 10555 . . . . . . . 8  |-  ( 0 ^ 0 )  =  1
142141oveq1i 5905 . . . . . . 7  |-  ( ( 0 ^ 0 )  x.  ( ! `  N ) )  =  ( 1  x.  ( ! `  N )
)
143136nncnd 8962 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  CC )
144143mulid2d 8005 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  x.  ( ! `  N ) )  =  ( ! `  N
) )
145142, 144eqtrid 2234 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( 0 ^ 0 )  x.  ( ! `  N ) )  =  ( ! `  N
) )
146138, 140, 1453brtr4d 4050 . . . . 5  |-  ( N  e.  NN0  ->  ( 0 ^ ( N  + 
1 ) )  <_ 
( ( 0 ^ 0 )  x.  ( ! `  N )
) )
147 oveq1 5902 . . . . . 6  |-  ( M  =  0  ->  ( M ^ ( N  + 
1 ) )  =  ( 0 ^ ( N  +  1 ) ) )
148 oveq12 5904 . . . . . . . 8  |-  ( ( M  =  0  /\  M  =  0 )  ->  ( M ^ M )  =  ( 0 ^ 0 ) )
149148anidms 397 . . . . . . 7  |-  ( M  =  0  ->  ( M ^ M )  =  ( 0 ^ 0 ) )
150149oveq1d 5910 . . . . . 6  |-  ( M  =  0  ->  (
( M ^ M
)  x.  ( ! `
 N ) )  =  ( ( 0 ^ 0 )  x.  ( ! `  N
) ) )
151147, 150breq12d 4031 . . . . 5  |-  ( M  =  0  ->  (
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) )  <->  ( 0 ^ ( N  + 
1 ) )  <_ 
( ( 0 ^ 0 )  x.  ( ! `  N )
) ) )
152146, 151imbitrrid 156 . . . 4  |-  ( M  =  0  ->  ( N  e.  NN0  ->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
153152imp 124 . . 3  |-  ( ( M  =  0  /\  N  e.  NN0 )  ->  ( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
154135, 153jaoian 796 . 2  |-  ( ( ( M  e.  NN  \/  M  =  0
)  /\  N  e.  NN0 )  ->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) )
1551, 154sylanb 284 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2160   class class class wbr 4018   ` cfv 5235  (class class class)co 5895   CCcc 7838   RRcr 7839   0cc0 7840   1c1 7841    + caddc 7843    x. cmul 7845    < clt 8021    <_ cle 8022   NNcn 8948   NN0cn0 9205   ZZcz 9282   ZZ>=cuz 9557   ^cexp 10549   !cfa 10736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-frec 6415  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-n0 9206  df-z 9283  df-uz 9558  df-rp 9683  df-seqfrec 10476  df-exp 10550  df-fac 10737
This theorem is referenced by:  faclbnd2  10753  faclbnd3  10754
  Copyright terms: Public domain W3C validator