ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  faclbnd Unicode version

Theorem faclbnd 10519
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )

Proof of Theorem faclbnd
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9003 . 2  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
2 oveq1 5789 . . . . . . . 8  |-  ( j  =  0  ->  (
j  +  1 )  =  ( 0  +  1 ) )
32oveq2d 5798 . . . . . . 7  |-  ( j  =  0  ->  ( M ^ ( j  +  1 ) )  =  ( M ^ (
0  +  1 ) ) )
4 fveq2 5429 . . . . . . . 8  |-  ( j  =  0  ->  ( ! `  j )  =  ( ! ` 
0 ) )
54oveq2d 5798 . . . . . . 7  |-  ( j  =  0  ->  (
( M ^ M
)  x.  ( ! `
 j ) )  =  ( ( M ^ M )  x.  ( ! `  0
) ) )
63, 5breq12d 3950 . . . . . 6  |-  ( j  =  0  ->  (
( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) )  <->  ( M ^ ( 0  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  0 )
) ) )
76imbi2d 229 . . . . 5  |-  ( j  =  0  ->  (
( M  e.  NN  ->  ( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) ) )  <->  ( M  e.  NN  ->  ( M ^ ( 0  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  0 )
) ) ) )
8 oveq1 5789 . . . . . . . 8  |-  ( j  =  k  ->  (
j  +  1 )  =  ( k  +  1 ) )
98oveq2d 5798 . . . . . . 7  |-  ( j  =  k  ->  ( M ^ ( j  +  1 ) )  =  ( M ^ (
k  +  1 ) ) )
10 fveq2 5429 . . . . . . . 8  |-  ( j  =  k  ->  ( ! `  j )  =  ( ! `  k ) )
1110oveq2d 5798 . . . . . . 7  |-  ( j  =  k  ->  (
( M ^ M
)  x.  ( ! `
 j ) )  =  ( ( M ^ M )  x.  ( ! `  k
) ) )
129, 11breq12d 3950 . . . . . 6  |-  ( j  =  k  ->  (
( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) )  <->  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) ) )
1312imbi2d 229 . . . . 5  |-  ( j  =  k  ->  (
( M  e.  NN  ->  ( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) ) )  <->  ( M  e.  NN  ->  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) ) ) )
14 oveq1 5789 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  (
j  +  1 )  =  ( ( k  +  1 )  +  1 ) )
1514oveq2d 5798 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( M ^ ( j  +  1 ) )  =  ( M ^ (
( k  +  1 )  +  1 ) ) )
16 fveq2 5429 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  ( ! `  j )  =  ( ! `  ( k  +  1 ) ) )
1716oveq2d 5798 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
( M ^ M
)  x.  ( ! `
 j ) )  =  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) )
1815, 17breq12d 3950 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) )  <->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) )
1918imbi2d 229 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( M  e.  NN  ->  ( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) ) )  <->  ( M  e.  NN  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) ) )
20 oveq1 5789 . . . . . . . 8  |-  ( j  =  N  ->  (
j  +  1 )  =  ( N  + 
1 ) )
2120oveq2d 5798 . . . . . . 7  |-  ( j  =  N  ->  ( M ^ ( j  +  1 ) )  =  ( M ^ ( N  +  1 ) ) )
22 fveq2 5429 . . . . . . . 8  |-  ( j  =  N  ->  ( ! `  j )  =  ( ! `  N ) )
2322oveq2d 5798 . . . . . . 7  |-  ( j  =  N  ->  (
( M ^ M
)  x.  ( ! `
 j ) )  =  ( ( M ^ M )  x.  ( ! `  N
) ) )
2421, 23breq12d 3950 . . . . . 6  |-  ( j  =  N  ->  (
( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) )  <->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
2524imbi2d 229 . . . . 5  |-  ( j  =  N  ->  (
( M  e.  NN  ->  ( M ^ (
j  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  j
) ) )  <->  ( M  e.  NN  ->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) ) )
26 nnre 8751 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  RR )
27 nnge1 8767 . . . . . . 7  |-  ( M  e.  NN  ->  1  <_  M )
28 elnnuz 9386 . . . . . . . 8  |-  ( M  e.  NN  <->  M  e.  ( ZZ>= `  1 )
)
2928biimpi 119 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  ( ZZ>= `  1 )
)
3026, 27, 29leexp2ad 10484 . . . . . 6  |-  ( M  e.  NN  ->  ( M ^ 1 )  <_ 
( M ^ M
) )
31 0p1e1 8858 . . . . . . . 8  |-  ( 0  +  1 )  =  1
3231oveq2i 5793 . . . . . . 7  |-  ( M ^ ( 0  +  1 ) )  =  ( M ^ 1 )
3332a1i 9 . . . . . 6  |-  ( M  e.  NN  ->  ( M ^ ( 0  +  1 ) )  =  ( M ^ 1 ) )
34 fac0 10506 . . . . . . . 8  |-  ( ! `
 0 )  =  1
3534oveq2i 5793 . . . . . . 7  |-  ( ( M ^ M )  x.  ( ! ` 
0 ) )  =  ( ( M ^ M )  x.  1 )
36 nnnn0 9008 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  NN0 )
3726, 36reexpcld 10472 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( M ^ M )  e.  RR )
3837recnd 7818 . . . . . . . 8  |-  ( M  e.  NN  ->  ( M ^ M )  e.  CC )
3938mulid1d 7807 . . . . . . 7  |-  ( M  e.  NN  ->  (
( M ^ M
)  x.  1 )  =  ( M ^ M ) )
4035, 39syl5eq 2185 . . . . . 6  |-  ( M  e.  NN  ->  (
( M ^ M
)  x.  ( ! `
 0 ) )  =  ( M ^ M ) )
4130, 33, 403brtr4d 3968 . . . . 5  |-  ( M  e.  NN  ->  ( M ^ ( 0  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  0 )
) )
4226ad3antrrr 484 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  M  e.  RR )
43 simpllr 524 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  k  e.  NN0 )
44 peano2nn0 9041 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
4543, 44syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( k  +  1 )  e. 
NN0 )
4642, 45reexpcld 10472 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( M ^ ( k  +  1 ) )  e.  RR )
4736ad3antrrr 484 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  M  e.  NN0 )
4842, 47reexpcld 10472 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( M ^ M )  e.  RR )
4943faccld 10514 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( ! `  k )  e.  NN )
5049nnred 8757 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( ! `  k )  e.  RR )
5148, 50remulcld 7820 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( ( M ^ M )  x.  ( ! `  k
) )  e.  RR )
52 nn0re 9010 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  k  e.  RR )
53 peano2re 7922 . . . . . . . . . . . . . 14  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
5443, 52, 533syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( k  +  1 )  e.  RR )
55 nngt0 8769 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  0  <  M )
5655ad3antrrr 484 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  0  <  M )
57 0re 7790 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
58 ltle 7875 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR  /\  M  e.  RR )  ->  ( 0  <  M  ->  0  <_  M )
)
5957, 58mpan 421 . . . . . . . . . . . . . . 15  |-  ( M  e.  RR  ->  (
0  <  M  ->  0  <_  M ) )
6042, 56, 59sylc 62 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  0  <_  M )
6142, 45, 60expge0d 10473 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  0  <_  ( M ^ ( k  +  1 ) ) )
62 simplr 520 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )
63 simprr 522 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  M  <_  ( k  +  1 ) )
6446, 51, 42, 54, 61, 60, 62, 63lemul12ad 8724 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  NN  /\  k  e. 
NN0 )  /\  ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
) )  /\  (
( M  e.  NN  /\  k  e.  NN0 )  /\  M  <_  ( k  +  1 ) ) )  ->  ( ( M ^ ( k  +  1 ) )  x.  M )  <_  (
( ( M ^ M )  x.  ( ! `  k )
)  x.  ( k  +  1 ) ) )
6564anandis 582 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  /\  M  <_  (
k  +  1 ) ) )  ->  (
( M ^ (
k  +  1 ) )  x.  M )  <_  ( ( ( M ^ M )  x.  ( ! `  k ) )  x.  ( k  +  1 ) ) )
66 nncn 8752 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  M  e.  CC )
67 expp1 10331 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  =  ( ( M ^ ( k  +  1 ) )  x.  M ) )
6866, 44, 67syl2an 287 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M ^ (
( k  +  1 )  +  1 ) )  =  ( ( M ^ ( k  +  1 ) )  x.  M ) )
6968adantr 274 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  /\  M  <_  (
k  +  1 ) ) )  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  =  ( ( M ^
( k  +  1 ) )  x.  M
) )
70 facp1 10508 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
7170adantl 275 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  (
k  +  1 ) )  =  ( ( ! `  k )  x.  ( k  +  1 ) ) )
7271oveq2d 5798 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  =  ( ( M ^ M )  x.  ( ( ! `
 k )  x.  ( k  +  1 ) ) ) )
7338adantr 274 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M ^ M
)  e.  CC )
74 faccl 10513 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
7574nncnd 8758 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  CC )
7675adantl 275 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  CC )
77 nn0cn 9011 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  k  e.  CC )
78 peano2cn 7921 . . . . . . . . . . . . . . . 16  |-  ( k  e.  CC  ->  (
k  +  1 )  e.  CC )
7977, 78syl 14 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  CC )
8079adantl 275 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  CC )
8173, 76, 80mulassd 7813 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( M ^ M )  x.  ( ! `  k
) )  x.  (
k  +  1 ) )  =  ( ( M ^ M )  x.  ( ( ! `
 k )  x.  ( k  +  1 ) ) ) )
8272, 81eqtr4d 2176 . . . . . . . . . . . 12  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  =  ( ( ( M ^ M
)  x.  ( ! `
 k ) )  x.  ( k  +  1 ) ) )
8382adantr 274 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  /\  M  <_  (
k  +  1 ) ) )  ->  (
( M ^ M
)  x.  ( ! `
 ( k  +  1 ) ) )  =  ( ( ( M ^ M )  x.  ( ! `  k ) )  x.  ( k  +  1 ) ) )
8465, 69, 833brtr4d 3968 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  /\  M  <_  (
k  +  1 ) ) )  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) )
8584exp32 363 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  ->  ( M  <_ 
( k  +  1 )  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) ) )
8685com23 78 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M  <_  (
k  +  1 )  ->  ( ( M ^ ( k  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  k )
)  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) ) )
87 nn0ltp1le 9140 . . . . . . . . . . 11  |-  ( ( ( k  +  1 )  e.  NN0  /\  M  e.  NN0 )  -> 
( ( k  +  1 )  <  M  <->  ( ( k  +  1 )  +  1 )  <_  M ) )
8844, 36, 87syl2anr 288 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( k  +  1 )  <  M  <->  ( ( k  +  1 )  +  1 )  <_  M ) )
89 peano2nn0 9041 . . . . . . . . . . . . . . 15  |-  ( ( k  +  1 )  e.  NN0  ->  ( ( k  +  1 )  +  1 )  e. 
NN0 )
9044, 89syl 14 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ( k  +  1 )  +  1 )  e. 
NN0 )
91 reexpcl 10341 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  ( ( k  +  1 )  +  1 )  e.  NN0 )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  e.  RR )
9226, 90, 91syl2an 287 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M ^ (
( k  +  1 )  +  1 ) )  e.  RR )
9392adantr 274 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  e.  RR )
9437ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ M
)  e.  RR )
9544faccld 10514 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  NN )
9695nnred 8757 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  RR )
97 remulcl 7772 . . . . . . . . . . . . . 14  |-  ( ( ( M ^ M
)  e.  RR  /\  ( ! `  ( k  +  1 ) )  e.  RR )  -> 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  e.  RR )
9837, 96, 97syl2an 287 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  e.  RR )
9998adantr 274 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) )  e.  RR )
10026ad2antrr 480 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  M  e.  RR )
10127ad2antrr 480 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  1  <_  M )
102 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( ( k  +  1 )  +  1 )  <_  M )
10390ad2antlr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( ( k  +  1 )  +  1 )  e.  NN0 )
104103nn0zd 9195 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( ( k  +  1 )  +  1 )  e.  ZZ )
105 nnz 9097 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  M  e.  ZZ )
106105ad2antrr 480 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  M  e.  ZZ )
107 eluz 9363 . . . . . . . . . . . . . . 15  |-  ( ( ( ( k  +  1 )  +  1 )  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  e.  (
ZZ>= `  ( ( k  +  1 )  +  1 ) )  <->  ( (
k  +  1 )  +  1 )  <_  M ) )
108104, 106, 107syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M  e.  (
ZZ>= `  ( ( k  +  1 )  +  1 ) )  <->  ( (
k  +  1 )  +  1 )  <_  M ) )
109102, 108mpbird 166 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  M  e.  ( ZZ>= `  ( ( k  +  1 )  +  1 ) ) )
110100, 101, 109leexp2ad 10484 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( M ^ M ) )
11137, 96anim12i 336 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^ M )  e.  RR  /\  ( ! `  (
k  +  1 ) )  e.  RR ) )
112 nn0re 9010 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  ->  M  e.  RR )
113 id 19 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  ->  M  e. 
NN0 )
114 nn0ge0 9026 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  ->  0  <_  M )
115112, 113, 114expge0d 10473 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN0  ->  0  <_ 
( M ^ M
) )
11636, 115syl 14 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  0  <_  ( M ^ M
) )
11795nnge1d 8787 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  1  <_ 
( ! `  (
k  +  1 ) ) )
118116, 117anim12i 336 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( 0  <_  ( M ^ M )  /\  1  <_  ( ! `  ( k  +  1 ) ) ) )
119 lemulge11 8648 . . . . . . . . . . . . . 14  |-  ( ( ( ( M ^ M )  e.  RR  /\  ( ! `  (
k  +  1 ) )  e.  RR )  /\  ( 0  <_ 
( M ^ M
)  /\  1  <_  ( ! `  ( k  +  1 ) ) ) )  ->  ( M ^ M )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) )
120111, 118, 119syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M ^ M
)  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) )
121120adantr 274 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ M
)  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) )
12293, 94, 99, 110, 121letrd 7910 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  k  e.  NN0 )  /\  ( ( k  +  1 )  +  1 )  <_  M )  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) )
123122ex 114 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( ( k  +  1 )  +  1 )  <_  M  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) ) )
12488, 123sylbid 149 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( k  +  1 )  <  M  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) ) )
125124a1dd 48 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( k  +  1 )  <  M  ->  ( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  ->  ( M ^
( ( k  +  1 )  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 ( k  +  1 ) ) ) ) ) )
126105adantr 274 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  ->  M  e.  ZZ )
12744adantl 275 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  NN0 )
128127nn0zd 9195 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  ZZ )
129 zlelttric 9123 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( M  <_ 
( k  +  1 )  \/  ( k  +  1 )  < 
M ) )
130126, 128, 129syl2anc 409 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( M  <_  (
k  +  1 )  \/  ( k  +  1 )  <  M
) )
13186, 125, 130mpjaod 708 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  NN0 )  -> 
( ( M ^
( k  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 k ) )  ->  ( M ^
( ( k  +  1 )  +  1 ) )  <_  (
( M ^ M
)  x.  ( ! `
 ( k  +  1 ) ) ) ) )
132131expcom 115 . . . . . 6  |-  ( k  e.  NN0  ->  ( M  e.  NN  ->  (
( M ^ (
k  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  k
) )  ->  ( M ^ ( ( k  +  1 )  +  1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  ( k  +  1 ) ) ) ) ) )
133132a2d 26 . . . . 5  |-  ( k  e.  NN0  ->  ( ( M  e.  NN  ->  ( M ^ ( k  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  k
) ) )  -> 
( M  e.  NN  ->  ( M ^ (
( k  +  1 )  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  (
k  +  1 ) ) ) ) ) )
1347, 13, 19, 25, 41, 133nn0ind 9189 . . . 4  |-  ( N  e.  NN0  ->  ( M  e.  NN  ->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
135134impcom 124 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
136 faccl 10513 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
137136nnnn0d 9054 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e. 
NN0 )
138137nn0ge0d 9057 . . . . . 6  |-  ( N  e.  NN0  ->  0  <_ 
( ! `  N
) )
139 nn0p1nn 9040 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
1401390expd 10471 . . . . . 6  |-  ( N  e.  NN0  ->  ( 0 ^ ( N  + 
1 ) )  =  0 )
141 0exp0e1 10329 . . . . . . . 8  |-  ( 0 ^ 0 )  =  1
142141oveq1i 5792 . . . . . . 7  |-  ( ( 0 ^ 0 )  x.  ( ! `  N ) )  =  ( 1  x.  ( ! `  N )
)
143136nncnd 8758 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  CC )
144143mulid2d 7808 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  x.  ( ! `  N ) )  =  ( ! `  N
) )
145142, 144syl5eq 2185 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( 0 ^ 0 )  x.  ( ! `  N ) )  =  ( ! `  N
) )
146138, 140, 1453brtr4d 3968 . . . . 5  |-  ( N  e.  NN0  ->  ( 0 ^ ( N  + 
1 ) )  <_ 
( ( 0 ^ 0 )  x.  ( ! `  N )
) )
147 oveq1 5789 . . . . . 6  |-  ( M  =  0  ->  ( M ^ ( N  + 
1 ) )  =  ( 0 ^ ( N  +  1 ) ) )
148 oveq12 5791 . . . . . . . 8  |-  ( ( M  =  0  /\  M  =  0 )  ->  ( M ^ M )  =  ( 0 ^ 0 ) )
149148anidms 395 . . . . . . 7  |-  ( M  =  0  ->  ( M ^ M )  =  ( 0 ^ 0 ) )
150149oveq1d 5797 . . . . . 6  |-  ( M  =  0  ->  (
( M ^ M
)  x.  ( ! `
 N ) )  =  ( ( 0 ^ 0 )  x.  ( ! `  N
) ) )
151147, 150breq12d 3950 . . . . 5  |-  ( M  =  0  ->  (
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) )  <->  ( 0 ^ ( N  + 
1 ) )  <_ 
( ( 0 ^ 0 )  x.  ( ! `  N )
) ) )
152146, 151syl5ibr 155 . . . 4  |-  ( M  =  0  ->  ( N  e.  NN0  ->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
153152imp 123 . . 3  |-  ( ( M  =  0  /\  N  e.  NN0 )  ->  ( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
154135, 153jaoian 785 . 2  |-  ( ( ( M  e.  NN  \/  M  =  0
)  /\  N  e.  NN0 )  ->  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) )
1551, 154sylanb 282 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1332    e. wcel 1481   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    < clt 7824    <_ cle 7825   NNcn 8744   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   ^cexp 10323   !cfa 10503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-fac 10504
This theorem is referenced by:  faclbnd2  10520  faclbnd3  10521
  Copyright terms: Public domain W3C validator