![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > an4s | Unicode version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
an4s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 586 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | an4s.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylbi 121 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: an42s 589 anandis 592 anandirs 593 trin2 5022 fnun 5324 2elresin 5329 f1co 5435 f1oun 5483 f1oco 5486 f1mpt 5775 poxp 6236 tfrlem7 6321 brecop 6628 th3qlem1 6640 oviec 6644 pmss12g 6678 addcmpblnq 7369 mulcmpblnq 7370 mulpipqqs 7375 mulclnq 7378 mulcanenq 7387 distrnqg 7389 mulcmpblnq0 7446 mulcanenq0ec 7447 mulclnq0 7454 nqnq0a 7456 nqnq0m 7457 distrnq0 7461 genipv 7511 genpelvl 7514 genpelvu 7515 genpml 7519 genpmu 7520 genpcdl 7521 genpcuu 7522 genprndl 7523 genprndu 7524 distrlem1prl 7584 distrlem1pru 7585 ltsopr 7598 addcmpblnr 7741 ltsrprg 7749 addclsr 7755 mulclsr 7756 addasssrg 7758 addresr 7839 mulresr 7840 axaddass 7874 axmulass 7875 axdistr 7876 mulgt0 8035 mul4 8092 add4 8121 2addsub 8174 addsubeq4 8175 sub4 8205 muladd 8344 mulsub 8361 add20i 8452 mulge0i 8580 mulap0b 8615 divmuldivap 8672 ltmul12a 8820 zmulcl 9309 uz2mulcl 9611 qaddcl 9638 qmulcl 9640 qreccl 9645 rpaddcl 9680 ge0addcl 9984 ge0xaddcl 9986 expge1 10560 rexanuz 11000 amgm2 11130 iooinsup 11288 mulcn2 11323 dvds2ln 11834 opoe 11903 omoe 11904 opeo 11905 omeo 11906 lcmgcd 12081 lcmdvds 12082 pc2dvds 12332 tgcl 13752 innei 13851 txbas 13946 txss12 13954 txbasval 13955 blsscls2 14181 qtopbasss 14209 lgslem3 14591 bj-indind 14872 |
Copyright terms: Public domain | W3C validator |