| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an4s | Unicode version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 |
|
| Ref | Expression |
|---|---|
| an4s |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 586 |
. 2
| |
| 2 | an4s.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an42s 589 anandis 592 anandirs 593 trin2 5074 fnun 5382 2elresin 5387 f1co 5493 f1oun 5542 f1oco 5545 f1mpt 5840 poxp 6318 tfrlem7 6403 brecop 6712 th3qlem1 6724 oviec 6728 pmss12g 6762 addcmpblnq 7480 mulcmpblnq 7481 mulpipqqs 7486 mulclnq 7489 mulcanenq 7498 distrnqg 7500 mulcmpblnq0 7557 mulcanenq0ec 7558 mulclnq0 7565 nqnq0a 7567 nqnq0m 7568 distrnq0 7572 genipv 7622 genpelvl 7625 genpelvu 7626 genpml 7630 genpmu 7631 genpcdl 7632 genpcuu 7633 genprndl 7634 genprndu 7635 distrlem1prl 7695 distrlem1pru 7696 ltsopr 7709 addcmpblnr 7852 ltsrprg 7860 addclsr 7866 mulclsr 7867 addasssrg 7869 addresr 7950 mulresr 7951 axaddass 7985 axmulass 7986 axdistr 7987 mulgt0 8147 mul4 8204 add4 8233 2addsub 8286 addsubeq4 8287 sub4 8317 muladd 8456 mulsub 8473 add20i 8565 mulge0i 8693 mulap0b 8728 divmuldivap 8785 ltmul12a 8933 zmulcl 9426 uz2mulcl 9729 qaddcl 9756 qmulcl 9758 qreccl 9763 rpaddcl 9799 ge0addcl 10103 ge0xaddcl 10105 expge1 10721 rexanuz 11299 amgm2 11429 iooinsup 11588 mulcn2 11623 dvds2ln 12135 opoe 12206 omoe 12207 opeo 12208 omeo 12209 lcmgcd 12400 lcmdvds 12401 pc2dvds 12653 tgcl 14536 innei 14635 txbas 14730 txss12 14738 txbasval 14739 blsscls2 14965 qtopbasss 14993 lgslem3 15479 bj-indind 15872 |
| Copyright terms: Public domain | W3C validator |