| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an4s | Unicode version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 |
|
| Ref | Expression |
|---|---|
| an4s |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 586 |
. 2
| |
| 2 | an4s.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an42s 589 anandis 592 anandirs 593 trin2 5061 fnun 5364 2elresin 5369 f1co 5475 f1oun 5524 f1oco 5527 f1mpt 5818 poxp 6290 tfrlem7 6375 brecop 6684 th3qlem1 6696 oviec 6700 pmss12g 6734 addcmpblnq 7434 mulcmpblnq 7435 mulpipqqs 7440 mulclnq 7443 mulcanenq 7452 distrnqg 7454 mulcmpblnq0 7511 mulcanenq0ec 7512 mulclnq0 7519 nqnq0a 7521 nqnq0m 7522 distrnq0 7526 genipv 7576 genpelvl 7579 genpelvu 7580 genpml 7584 genpmu 7585 genpcdl 7586 genpcuu 7587 genprndl 7588 genprndu 7589 distrlem1prl 7649 distrlem1pru 7650 ltsopr 7663 addcmpblnr 7806 ltsrprg 7814 addclsr 7820 mulclsr 7821 addasssrg 7823 addresr 7904 mulresr 7905 axaddass 7939 axmulass 7940 axdistr 7941 mulgt0 8101 mul4 8158 add4 8187 2addsub 8240 addsubeq4 8241 sub4 8271 muladd 8410 mulsub 8427 add20i 8519 mulge0i 8647 mulap0b 8682 divmuldivap 8739 ltmul12a 8887 zmulcl 9379 uz2mulcl 9682 qaddcl 9709 qmulcl 9711 qreccl 9716 rpaddcl 9752 ge0addcl 10056 ge0xaddcl 10058 expge1 10668 rexanuz 11153 amgm2 11283 iooinsup 11442 mulcn2 11477 dvds2ln 11989 opoe 12060 omoe 12061 opeo 12062 omeo 12063 lcmgcd 12246 lcmdvds 12247 pc2dvds 12499 tgcl 14300 innei 14399 txbas 14494 txss12 14502 txbasval 14503 blsscls2 14729 qtopbasss 14757 lgslem3 15243 bj-indind 15578 |
| Copyright terms: Public domain | W3C validator |