![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > an4s | Unicode version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an4s.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
an4s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 553 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | an4s.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylbi 119 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: an42s 556 anandis 559 anandirs 560 trin2 4823 fnun 5120 2elresin 5125 f1co 5228 f1oun 5273 f1oco 5276 f1mpt 5550 poxp 5997 tfrlem7 6082 brecop 6380 th3qlem1 6392 oviec 6396 pmss12g 6430 addcmpblnq 6924 mulcmpblnq 6925 mulpipqqs 6930 mulclnq 6933 mulcanenq 6942 distrnqg 6944 mulcmpblnq0 7001 mulcanenq0ec 7002 mulclnq0 7009 nqnq0a 7011 nqnq0m 7012 distrnq0 7016 genipv 7066 genpelvl 7069 genpelvu 7070 genpml 7074 genpmu 7075 genpcdl 7076 genpcuu 7077 genprndl 7078 genprndu 7079 distrlem1prl 7139 distrlem1pru 7140 ltsopr 7153 addcmpblnr 7283 ltsrprg 7291 addclsr 7297 mulclsr 7298 addasssrg 7300 addresr 7372 mulresr 7373 axaddass 7405 axmulass 7406 axdistr 7407 mulgt0 7558 mul4 7612 add4 7641 2addsub 7694 addsubeq4 7695 sub4 7725 muladd 7860 mulsub 7877 add20i 7968 mulge0i 8095 mulap0b 8122 divmuldivap 8177 ltmul12a 8319 zmulcl 8801 uz2mulcl 9093 qaddcl 9118 qmulcl 9120 qreccl 9125 rpaddcl 9155 ge0addcl 9397 expge1 9988 rexanuz 10417 amgm2 10547 mulcn2 10697 dvds2ln 11103 opoe 11169 omoe 11170 opeo 11171 omeo 11172 lcmgcd 11334 lcmdvds 11335 bj-indind 11782 |
Copyright terms: Public domain | W3C validator |