| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an4s | Unicode version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 |
|
| Ref | Expression |
|---|---|
| an4s |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 586 |
. 2
| |
| 2 | an4s.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an42s 589 anandis 592 anandirs 593 trin2 5075 fnun 5383 2elresin 5388 f1co 5495 f1oun 5544 f1oco 5547 f1mpt 5842 poxp 6320 tfrlem7 6405 brecop 6714 th3qlem1 6726 oviec 6730 pmss12g 6764 addcmpblnq 7482 mulcmpblnq 7483 mulpipqqs 7488 mulclnq 7491 mulcanenq 7500 distrnqg 7502 mulcmpblnq0 7559 mulcanenq0ec 7560 mulclnq0 7567 nqnq0a 7569 nqnq0m 7570 distrnq0 7574 genipv 7624 genpelvl 7627 genpelvu 7628 genpml 7632 genpmu 7633 genpcdl 7634 genpcuu 7635 genprndl 7636 genprndu 7637 distrlem1prl 7697 distrlem1pru 7698 ltsopr 7711 addcmpblnr 7854 ltsrprg 7862 addclsr 7868 mulclsr 7869 addasssrg 7871 addresr 7952 mulresr 7953 axaddass 7987 axmulass 7988 axdistr 7989 mulgt0 8149 mul4 8206 add4 8235 2addsub 8288 addsubeq4 8289 sub4 8319 muladd 8458 mulsub 8475 add20i 8567 mulge0i 8695 mulap0b 8730 divmuldivap 8787 ltmul12a 8935 zmulcl 9428 uz2mulcl 9731 qaddcl 9758 qmulcl 9760 qreccl 9765 rpaddcl 9801 ge0addcl 10105 ge0xaddcl 10107 expge1 10723 rexanuz 11332 amgm2 11462 iooinsup 11621 mulcn2 11656 dvds2ln 12168 opoe 12239 omoe 12240 opeo 12241 omeo 12242 lcmgcd 12433 lcmdvds 12434 pc2dvds 12686 tgcl 14569 innei 14668 txbas 14763 txss12 14771 txbasval 14772 blsscls2 14998 qtopbasss 15026 lgslem3 15512 bj-indind 15905 |
| Copyright terms: Public domain | W3C validator |