| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an4s | Unicode version | ||
| Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| an4s.1 |
|
| Ref | Expression |
|---|---|
| an4s |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 586 |
. 2
| |
| 2 | an4s.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an42s 591 anandis 594 anandirs 595 trin2 5120 fnun 5429 2elresin 5434 f1co 5543 f1oun 5592 f1oco 5595 f1mpt 5895 poxp 6378 tfrlem7 6463 brecop 6772 th3qlem1 6784 oviec 6788 pmss12g 6822 addcmpblnq 7554 mulcmpblnq 7555 mulpipqqs 7560 mulclnq 7563 mulcanenq 7572 distrnqg 7574 mulcmpblnq0 7631 mulcanenq0ec 7632 mulclnq0 7639 nqnq0a 7641 nqnq0m 7642 distrnq0 7646 genipv 7696 genpelvl 7699 genpelvu 7700 genpml 7704 genpmu 7705 genpcdl 7706 genpcuu 7707 genprndl 7708 genprndu 7709 distrlem1prl 7769 distrlem1pru 7770 ltsopr 7783 addcmpblnr 7926 ltsrprg 7934 addclsr 7940 mulclsr 7941 addasssrg 7943 addresr 8024 mulresr 8025 axaddass 8059 axmulass 8060 axdistr 8061 mulgt0 8221 mul4 8278 add4 8307 2addsub 8360 addsubeq4 8361 sub4 8391 muladd 8530 mulsub 8547 add20i 8639 mulge0i 8767 mulap0b 8802 divmuldivap 8859 ltmul12a 9007 zmulcl 9500 uz2mulcl 9803 qaddcl 9830 qmulcl 9832 qreccl 9837 rpaddcl 9873 ge0addcl 10177 ge0xaddcl 10179 expge1 10798 rexanuz 11499 amgm2 11629 iooinsup 11788 mulcn2 11823 dvds2ln 12335 opoe 12406 omoe 12407 opeo 12408 omeo 12409 lcmgcd 12600 lcmdvds 12601 pc2dvds 12853 tgcl 14738 innei 14837 txbas 14932 txss12 14940 txbasval 14941 blsscls2 15167 qtopbasss 15195 lgslem3 15681 bj-indind 16295 |
| Copyright terms: Public domain | W3C validator |