| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axext3 | Unicode version | ||
| Description: A generalization of the
Axiom of Extensionality in which |
| Ref | Expression |
|---|---|
| axext3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 2180 |
. . . . 5
| |
| 2 | 1 | bibi1d 233 |
. . . 4
|
| 3 | 2 | albidv 1846 |
. . 3
|
| 4 | equequ1 1734 |
. . 3
| |
| 5 | 3, 4 | imbi12d 234 |
. 2
|
| 6 | ax-ext 2186 |
. 2
| |
| 7 | 5, 6 | chvarv 1964 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-14 2178 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 |
| This theorem is referenced by: axext4 2188 |
| Copyright terms: Public domain | W3C validator |