| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elequ2 | Unicode version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elequ2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-14 2203 |
. 2
| |
| 2 | ax-14 2203 |
. . 3
| |
| 3 | 2 | equcoms 1754 |
. 2
|
| 4 | 1, 3 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ie2 1540 ax-8 1550 ax-17 1572 ax-i9 1576 ax-14 2203 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elsb2 2208 dveel2 2210 axext3 2212 axext4 2213 bm1.1 2214 eleq2w 2291 bm1.3ii 4205 nalset 4214 zfun 4525 fv3 5650 tfrlemisucaccv 6471 tfr1onlemsucaccv 6487 tfrcllemsucaccv 6500 acfun 7389 ccfunen 7450 cc1 7451 nninfinf 10665 bdsepnft 16250 bdsepnfALT 16252 bdbm1.3ii 16254 bj-nalset 16258 bj-nnelirr 16316 nninfalllem1 16374 nninfsellemeq 16380 nninfsellemqall 16381 nninfsellemeqinf 16382 nninfomni 16385 |
| Copyright terms: Public domain | W3C validator |