| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elequ2 | Unicode version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elequ2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-14 2179 |
. 2
| |
| 2 | ax-14 2179 |
. . 3
| |
| 3 | 2 | equcoms 1731 |
. 2
|
| 4 | 1, 3 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 ax-ie2 1517 ax-8 1527 ax-17 1549 ax-i9 1553 ax-14 2179 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elsb2 2184 dveel2 2186 axext3 2188 axext4 2189 bm1.1 2190 eleq2w 2267 bm1.3ii 4166 nalset 4175 zfun 4482 fv3 5601 tfrlemisucaccv 6413 tfr1onlemsucaccv 6429 tfrcllemsucaccv 6442 acfun 7321 ccfunen 7378 cc1 7379 nninfinf 10590 bdsepnft 15860 bdsepnfALT 15862 bdbm1.3ii 15864 bj-nalset 15868 bj-nnelirr 15926 nninfalllem1 15982 nninfsellemeq 15988 nninfsellemqall 15989 nninfsellemeqinf 15990 nninfomni 15993 |
| Copyright terms: Public domain | W3C validator |