| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elequ2 | Unicode version | ||
| Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| elequ2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-14 2170 |
. 2
| |
| 2 | ax-14 2170 |
. . 3
| |
| 3 | 2 | equcoms 1722 |
. 2
|
| 4 | 1, 3 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-17 1540 ax-i9 1544 ax-14 2170 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: elsb2 2175 dveel2 2177 axext3 2179 axext4 2180 bm1.1 2181 eleq2w 2258 bm1.3ii 4154 nalset 4163 zfun 4469 fv3 5581 tfrlemisucaccv 6383 tfr1onlemsucaccv 6399 tfrcllemsucaccv 6412 acfun 7274 ccfunen 7331 cc1 7332 nninfinf 10535 bdsepnft 15533 bdsepnfALT 15535 bdbm1.3ii 15537 bj-nalset 15541 bj-nnelirr 15599 nninfalllem1 15652 nninfsellemeq 15658 nninfsellemqall 15659 nninfsellemeqinf 15660 nninfomni 15663 |
| Copyright terms: Public domain | W3C validator |