Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elequ2 | Unicode version |
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
elequ2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-14 2131 | . 2 | |
2 | ax-14 2131 | . . 3 | |
3 | 2 | equcoms 1688 | . 2 |
4 | 1, 3 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1429 ax-ie2 1474 ax-8 1484 ax-17 1506 ax-i9 1510 ax-14 2131 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: elsb4 2136 dveel2 2138 axext3 2140 axext4 2141 bm1.1 2142 eleq2w 2219 bm1.3ii 4085 nalset 4094 zfun 4394 fv3 5490 tfrlemisucaccv 6269 tfr1onlemsucaccv 6285 tfrcllemsucaccv 6298 acfun 7136 ccfunen 7178 cc1 7179 bdsepnft 13433 bdsepnfALT 13435 bdbm1.3ii 13437 bj-nalset 13441 bj-nnelirr 13499 nninfalllem1 13551 nninfsellemeq 13557 nninfsellemqall 13558 nninfsellemeqinf 13559 nninfomni 13562 |
Copyright terms: Public domain | W3C validator |