ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baibr Unicode version

Theorem baibr 925
Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.)
Hypothesis
Ref Expression
baib.1  |-  ( ph  <->  ( ps  /\  ch )
)
Assertion
Ref Expression
baibr  |-  ( ps 
->  ( ch  <->  ph ) )

Proof of Theorem baibr
StepHypRef Expression
1 baib.1 . . 3  |-  ( ph  <->  ( ps  /\  ch )
)
21baib 924 . 2  |-  ( ps 
->  ( ph  <->  ch )
)
32bicomd 141 1  |-  ( ps 
->  ( ch  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  rbaibr  927  pm5.44  930  exmoeu2  2126  r19.9rmv  3583  dfopg  3855  brinxp  4787  infidc  7101  elioo5  10129  prmind2  12642  eulerthlemfi  12750  phisum  12763  pcelnn  12844  bj-charfundcALT  16172
  Copyright terms: Public domain W3C validator