| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfopg | Unicode version | ||
| Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dfopg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. 2
| |
| 2 | elex 2788 |
. 2
| |
| 3 | df-3an 983 |
. . . . . 6
| |
| 4 | 3 | baibr 922 |
. . . . 5
|
| 5 | 4 | abbidv 2325 |
. . . 4
|
| 6 | abid2 2328 |
. . . 4
| |
| 7 | df-op 3652 |
. . . . 5
| |
| 8 | 7 | eqcomi 2211 |
. . . 4
|
| 9 | 5, 6, 8 | 3eqtr3g 2263 |
. . 3
|
| 10 | 9 | eqcomd 2213 |
. 2
|
| 11 | 1, 2, 10 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 df-op 3652 |
| This theorem is referenced by: dfop 3832 opexg 4290 opth1 4298 opth 4299 0nelop 4310 op1stbg 4544 |
| Copyright terms: Public domain | W3C validator |