ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfopg Unicode version

Theorem dfopg 3817
Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dfopg  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )

Proof of Theorem dfopg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2783 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 elex 2783 . 2  |-  ( B  e.  W  ->  B  e.  _V )
3 df-3an 983 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } )  <->  ( ( A  e.  _V  /\  B  e.  _V )  /\  x  e.  { { A } ,  { A ,  B } } ) )
43baibr 922 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( x  e.  { { A } ,  { A ,  B } } 
<->  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) ) )
54abbidv 2323 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { x  |  x  e.  { { A } ,  { A ,  B } } }  =  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) } )
6 abid2 2326 . . . 4  |-  { x  |  x  e.  { { A } ,  { A ,  B } } }  =  { { A } ,  { A ,  B } }
7 df-op 3642 . . . . 5  |-  <. A ,  B >.  =  { x  |  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
87eqcomi 2209 . . . 4  |-  { x  |  ( A  e. 
_V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }  =  <. A ,  B >.
95, 6, 83eqtr3g 2261 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { { A } ,  { A ,  B } }  =  <. A ,  B >. )
109eqcomd 2211 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
111, 2, 10syl2an 289 1  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   {cab 2191   _Vcvv 2772   {csn 3633   {cpr 3634   <.cop 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774  df-op 3642
This theorem is referenced by:  dfop  3818  opexg  4272  opth1  4280  opth  4281  0nelop  4292  op1stbg  4526
  Copyright terms: Public domain W3C validator