Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundcALT Unicode version

Theorem bj-charfundcALT 14332
Description: Alternate proof of bj-charfundc 14331. It was expected to be much shorter since it uses bj-charfun 14330 for the main part of the proof and the rest is basic computations, but these turn out to be lengthy, maybe because of the limited library of available lemmas. (Contributed by BJ, 15-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bj-charfundc.1  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
bj-charfundc.dc  |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )
Assertion
Ref Expression
bj-charfundcALT  |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A
) ( F `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) ) ) )
Distinct variable groups:    ph, x    x, X    x, A    x, F

Proof of Theorem bj-charfundcALT
StepHypRef Expression
1 bj-charfundc.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
21bj-charfun 14330 . 2  |-  ( ph  ->  ( ( F : X
--> ~P 1o  /\  ( F  |`  ( ( X  i^i  A )  u.  ( X  \  A
) ) ) : ( ( X  i^i  A )  u.  ( X 
\  A ) ) --> 2o )  /\  ( A. x  e.  ( X  i^i  A ) ( F `  x )  =  1o  /\  A. x  e.  ( X  \  A ) ( F `
 x )  =  (/) ) ) )
3 difin 3372 . . . . . . . . . . . 12  |-  ( X 
\  ( X  i^i  A ) )  =  ( X  \  A )
43eqcomi 2181 . . . . . . . . . . 11  |-  ( X 
\  A )  =  ( X  \  ( X  i^i  A ) )
54a1i 9 . . . . . . . . . 10  |-  ( ph  ->  ( X  \  A
)  =  ( X 
\  ( X  i^i  A ) ) )
65uneq2d 3289 . . . . . . . . 9  |-  ( ph  ->  ( ( X  i^i  A )  u.  ( X 
\  A ) )  =  ( ( X  i^i  A )  u.  ( X  \  ( X  i^i  A ) ) ) )
7 inss1 3355 . . . . . . . . . . 11  |-  ( X  i^i  A )  C_  X
87a1i 9 . . . . . . . . . 10  |-  ( ph  ->  ( X  i^i  A
)  C_  X )
9 bj-charfundc.dc . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )
10 elin 3318 . . . . . . . . . . . . . 14  |-  ( x  e.  ( X  i^i  A )  <->  ( x  e.  X  /\  x  e.  A ) )
1110baibr 920 . . . . . . . . . . . . 13  |-  ( x  e.  X  ->  (
x  e.  A  <->  x  e.  ( X  i^i  A ) ) )
1211dcbid 838 . . . . . . . . . . . 12  |-  ( x  e.  X  ->  (DECID  x  e.  A  <-> DECID  x  e.  ( X  i^i  A ) ) )
1312ralbiia 2491 . . . . . . . . . . 11  |-  ( A. x  e.  X DECID  x  e.  A 
<-> 
A. x  e.  X DECID  x  e.  ( X  i^i  A
) )
149, 13sylib 122 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  X DECID  x  e.  ( X  i^i  A
) )
15 undifdcss 6917 . . . . . . . . . 10  |-  ( X  =  ( ( X  i^i  A )  u.  ( X  \  ( X  i^i  A ) ) )  <->  ( ( X  i^i  A )  C_  X  /\  A. x  e.  X DECID  x  e.  ( X  i^i  A ) ) )
168, 14, 15sylanbrc 417 . . . . . . . . 9  |-  ( ph  ->  X  =  ( ( X  i^i  A )  u.  ( X  \ 
( X  i^i  A
) ) ) )
176, 16eqtr4d 2213 . . . . . . . 8  |-  ( ph  ->  ( ( X  i^i  A )  u.  ( X 
\  A ) )  =  X )
1817reseq2d 4904 . . . . . . 7  |-  ( ph  ->  ( F  |`  (
( X  i^i  A
)  u.  ( X 
\  A ) ) )  =  ( F  |`  X ) )
19 ssidd 3176 . . . . . . . . 9  |-  ( ph  ->  X  C_  X )
2019resmptd 4955 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) )  |`  X )  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
211reseq1d 4903 . . . . . . . 8  |-  ( ph  ->  ( F  |`  X )  =  ( ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) )  |`  X ) )
2220, 21, 13eqtr4d 2220 . . . . . . 7  |-  ( ph  ->  ( F  |`  X )  =  F )
2318, 22eqtrd 2210 . . . . . 6  |-  ( ph  ->  ( F  |`  (
( X  i^i  A
)  u.  ( X 
\  A ) ) )  =  F )
2423, 17feq12d 5352 . . . . 5  |-  ( ph  ->  ( ( F  |`  ( ( X  i^i  A )  u.  ( X 
\  A ) ) ) : ( ( X  i^i  A )  u.  ( X  \  A ) ) --> 2o  <->  F : X --> 2o ) )
2524biimpd 144 . . . 4  |-  ( ph  ->  ( ( F  |`  ( ( X  i^i  A )  u.  ( X 
\  A ) ) ) : ( ( X  i^i  A )  u.  ( X  \  A ) ) --> 2o 
->  F : X --> 2o ) )
2625adantld 278 . . 3  |-  ( ph  ->  ( ( F : X
--> ~P 1o  /\  ( F  |`  ( ( X  i^i  A )  u.  ( X  \  A
) ) ) : ( ( X  i^i  A )  u.  ( X 
\  A ) ) --> 2o )  ->  F : X --> 2o ) )
2726anim1d 336 . 2  |-  ( ph  ->  ( ( ( F : X --> ~P 1o  /\  ( F  |`  (
( X  i^i  A
)  u.  ( X 
\  A ) ) ) : ( ( X  i^i  A )  u.  ( X  \  A ) ) --> 2o )  /\  ( A. x  e.  ( X  i^i  A ) ( F `
 x )  =  1o  /\  A. x  e.  ( X  \  A
) ( F `  x )  =  (/) ) )  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A ) ( F `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( F `  x )  =  (/) ) ) ) )
282, 27mpd 13 1  |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A
) ( F `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455    \ cdif 3126    u. cun 3127    i^i cin 3128    C_ wss 3129   (/)c0 3422   ifcif 3534   ~Pcpw 3575    |-> cmpt 4062    |` cres 4626   -->wf 5209   ` cfv 5213   1oc1o 6405   2oc2o 6406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4119  ax-nul 4127  ax-pow 4172  ax-pr 4207  ax-un 4431
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-br 4002  df-opab 4063  df-mpt 4064  df-tr 4100  df-id 4291  df-iord 4364  df-on 4366  df-suc 4369  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-ima 4637  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-fv 5221  df-1o 6412  df-2o 6413
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator