Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundcALT Unicode version

Theorem bj-charfundcALT 14600
Description: Alternate proof of bj-charfundc 14599. It was expected to be much shorter since it uses bj-charfun 14598 for the main part of the proof and the rest is basic computations, but these turn out to be lengthy, maybe because of the limited library of available lemmas. (Contributed by BJ, 15-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bj-charfundc.1  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
bj-charfundc.dc  |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )
Assertion
Ref Expression
bj-charfundcALT  |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A
) ( F `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) ) ) )
Distinct variable groups:    ph, x    x, X    x, A    x, F

Proof of Theorem bj-charfundcALT
StepHypRef Expression
1 bj-charfundc.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
21bj-charfun 14598 . 2  |-  ( ph  ->  ( ( F : X
--> ~P 1o  /\  ( F  |`  ( ( X  i^i  A )  u.  ( X  \  A
) ) ) : ( ( X  i^i  A )  u.  ( X 
\  A ) ) --> 2o )  /\  ( A. x  e.  ( X  i^i  A ) ( F `  x )  =  1o  /\  A. x  e.  ( X  \  A ) ( F `
 x )  =  (/) ) ) )
3 difin 3374 . . . . . . . . . . . 12  |-  ( X 
\  ( X  i^i  A ) )  =  ( X  \  A )
43eqcomi 2181 . . . . . . . . . . 11  |-  ( X 
\  A )  =  ( X  \  ( X  i^i  A ) )
54a1i 9 . . . . . . . . . 10  |-  ( ph  ->  ( X  \  A
)  =  ( X 
\  ( X  i^i  A ) ) )
65uneq2d 3291 . . . . . . . . 9  |-  ( ph  ->  ( ( X  i^i  A )  u.  ( X 
\  A ) )  =  ( ( X  i^i  A )  u.  ( X  \  ( X  i^i  A ) ) ) )
7 inss1 3357 . . . . . . . . . . 11  |-  ( X  i^i  A )  C_  X
87a1i 9 . . . . . . . . . 10  |-  ( ph  ->  ( X  i^i  A
)  C_  X )
9 bj-charfundc.dc . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  X DECID  x  e.  A )
10 elin 3320 . . . . . . . . . . . . . 14  |-  ( x  e.  ( X  i^i  A )  <->  ( x  e.  X  /\  x  e.  A ) )
1110baibr 920 . . . . . . . . . . . . 13  |-  ( x  e.  X  ->  (
x  e.  A  <->  x  e.  ( X  i^i  A ) ) )
1211dcbid 838 . . . . . . . . . . . 12  |-  ( x  e.  X  ->  (DECID  x  e.  A  <-> DECID  x  e.  ( X  i^i  A ) ) )
1312ralbiia 2491 . . . . . . . . . . 11  |-  ( A. x  e.  X DECID  x  e.  A 
<-> 
A. x  e.  X DECID  x  e.  ( X  i^i  A
) )
149, 13sylib 122 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  X DECID  x  e.  ( X  i^i  A
) )
15 undifdcss 6924 . . . . . . . . . 10  |-  ( X  =  ( ( X  i^i  A )  u.  ( X  \  ( X  i^i  A ) ) )  <->  ( ( X  i^i  A )  C_  X  /\  A. x  e.  X DECID  x  e.  ( X  i^i  A ) ) )
168, 14, 15sylanbrc 417 . . . . . . . . 9  |-  ( ph  ->  X  =  ( ( X  i^i  A )  u.  ( X  \ 
( X  i^i  A
) ) ) )
176, 16eqtr4d 2213 . . . . . . . 8  |-  ( ph  ->  ( ( X  i^i  A )  u.  ( X 
\  A ) )  =  X )
1817reseq2d 4909 . . . . . . 7  |-  ( ph  ->  ( F  |`  (
( X  i^i  A
)  u.  ( X 
\  A ) ) )  =  ( F  |`  X ) )
19 ssidd 3178 . . . . . . . . 9  |-  ( ph  ->  X  C_  X )
2019resmptd 4960 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) )  |`  X )  =  ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) ) )
211reseq1d 4908 . . . . . . . 8  |-  ( ph  ->  ( F  |`  X )  =  ( ( x  e.  X  |->  if ( x  e.  A ,  1o ,  (/) ) )  |`  X ) )
2220, 21, 13eqtr4d 2220 . . . . . . 7  |-  ( ph  ->  ( F  |`  X )  =  F )
2318, 22eqtrd 2210 . . . . . 6  |-  ( ph  ->  ( F  |`  (
( X  i^i  A
)  u.  ( X 
\  A ) ) )  =  F )
2423, 17feq12d 5357 . . . . 5  |-  ( ph  ->  ( ( F  |`  ( ( X  i^i  A )  u.  ( X 
\  A ) ) ) : ( ( X  i^i  A )  u.  ( X  \  A ) ) --> 2o  <->  F : X --> 2o ) )
2524biimpd 144 . . . 4  |-  ( ph  ->  ( ( F  |`  ( ( X  i^i  A )  u.  ( X 
\  A ) ) ) : ( ( X  i^i  A )  u.  ( X  \  A ) ) --> 2o 
->  F : X --> 2o ) )
2625adantld 278 . . 3  |-  ( ph  ->  ( ( F : X
--> ~P 1o  /\  ( F  |`  ( ( X  i^i  A )  u.  ( X  \  A
) ) ) : ( ( X  i^i  A )  u.  ( X 
\  A ) ) --> 2o )  ->  F : X --> 2o ) )
2726anim1d 336 . 2  |-  ( ph  ->  ( ( ( F : X --> ~P 1o  /\  ( F  |`  (
( X  i^i  A
)  u.  ( X 
\  A ) ) ) : ( ( X  i^i  A )  u.  ( X  \  A ) ) --> 2o )  /\  ( A. x  e.  ( X  i^i  A ) ( F `
 x )  =  1o  /\  A. x  e.  ( X  \  A
) ( F `  x )  =  (/) ) )  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A ) ( F `  x
)  =  1o  /\  A. x  e.  ( X 
\  A ) ( F `  x )  =  (/) ) ) ) )
282, 27mpd 13 1  |-  ( ph  ->  ( F : X --> 2o  /\  ( A. x  e.  ( X  i^i  A
) ( F `  x )  =  1o 
/\  A. x  e.  ( X  \  A ) ( F `  x
)  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455    \ cdif 3128    u. cun 3129    i^i cin 3130    C_ wss 3131   (/)c0 3424   ifcif 3536   ~Pcpw 3577    |-> cmpt 4066    |` cres 4630   -->wf 5214   ` cfv 5218   1oc1o 6412   2oc2o 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-1o 6419  df-2o 6420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator