ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.9rmv Unicode version

Theorem r19.9rmv 3500
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.)
Assertion
Ref Expression
r19.9rmv  |-  ( E. y  y  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
Distinct variable groups:    x, A    y, A    ph, x
Allowed substitution hint:    ph( y)

Proof of Theorem r19.9rmv
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eleq1 2229 . . 3  |-  ( a  =  y  ->  (
a  e.  A  <->  y  e.  A ) )
21cbvexv 1906 . 2  |-  ( E. a  a  e.  A  <->  E. y  y  e.  A
)
3 eleq1 2229 . . . 4  |-  ( a  =  x  ->  (
a  e.  A  <->  x  e.  A ) )
43cbvexv 1906 . . 3  |-  ( E. a  a  e.  A  <->  E. x  x  e.  A
)
5 df-rex 2450 . . . . 5  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
6 19.41v 1890 . . . . 5  |-  ( E. x ( x  e.  A  /\  ph )  <->  ( E. x  x  e.  A  /\  ph )
)
75, 6bitri 183 . . . 4  |-  ( E. x  e.  A  ph  <->  ( E. x  x  e.  A  /\  ph )
)
87baibr 910 . . 3  |-  ( E. x  x  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
94, 8sylbi 120 . 2  |-  ( E. a  a  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
102, 9sylbir 134 1  |-  ( E. y  y  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E.wex 1480    e. wcel 2136   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161  df-rex 2450
This theorem is referenced by:  r19.45mv  3502  r19.44mv  3503  iunconstm  3874  fconstfvm  5703  frecabcl  6367  ltexprlemloc  7548  lcmgcdlem  12009
  Copyright terms: Public domain W3C validator