| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.9rmv | Unicode version | ||
| Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.) |
| Ref | Expression |
|---|---|
| r19.9rmv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2268 |
. . 3
| |
| 2 | 1 | cbvexv 1942 |
. 2
|
| 3 | eleq1 2268 |
. . . 4
| |
| 4 | 3 | cbvexv 1942 |
. . 3
|
| 5 | df-rex 2490 |
. . . . 5
| |
| 6 | 19.41v 1926 |
. . . . 5
| |
| 7 | 5, 6 | bitri 184 |
. . . 4
|
| 8 | 7 | baibr 922 |
. . 3
|
| 9 | 4, 8 | sylbi 121 |
. 2
|
| 10 | 2, 9 | sylbir 135 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-rex 2490 |
| This theorem is referenced by: r19.45mv 3554 r19.44mv 3555 iunconstm 3935 fconstfvm 5802 frecabcl 6485 ltexprlemloc 7720 lcmgcdlem 12399 dvdsr02 13867 |
| Copyright terms: Public domain | W3C validator |