| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.9rmv | Unicode version | ||
| Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.) |
| Ref | Expression |
|---|---|
| r19.9rmv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2292 |
. . 3
| |
| 2 | 1 | cbvexv 1965 |
. 2
|
| 3 | eleq1 2292 |
. . . 4
| |
| 4 | 3 | cbvexv 1965 |
. . 3
|
| 5 | df-rex 2514 |
. . . . 5
| |
| 6 | 19.41v 1949 |
. . . . 5
| |
| 7 | 5, 6 | bitri 184 |
. . . 4
|
| 8 | 7 | baibr 925 |
. . 3
|
| 9 | 4, 8 | sylbi 121 |
. 2
|
| 10 | 2, 9 | sylbir 135 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-rex 2514 |
| This theorem is referenced by: r19.45mv 3585 r19.44mv 3586 iunconstm 3973 fconstfvm 5857 frecabcl 6545 ltexprlemloc 7794 lcmgcdlem 12599 dvdsr02 14069 |
| Copyright terms: Public domain | W3C validator |