ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.9rmv Unicode version

Theorem r19.9rmv 3542
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.)
Assertion
Ref Expression
r19.9rmv  |-  ( E. y  y  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
Distinct variable groups:    x, A    y, A    ph, x
Allowed substitution hint:    ph( y)

Proof of Theorem r19.9rmv
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eleq1 2259 . . 3  |-  ( a  =  y  ->  (
a  e.  A  <->  y  e.  A ) )
21cbvexv 1933 . 2  |-  ( E. a  a  e.  A  <->  E. y  y  e.  A
)
3 eleq1 2259 . . . 4  |-  ( a  =  x  ->  (
a  e.  A  <->  x  e.  A ) )
43cbvexv 1933 . . 3  |-  ( E. a  a  e.  A  <->  E. x  x  e.  A
)
5 df-rex 2481 . . . . 5  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
6 19.41v 1917 . . . . 5  |-  ( E. x ( x  e.  A  /\  ph )  <->  ( E. x  x  e.  A  /\  ph )
)
75, 6bitri 184 . . . 4  |-  ( E. x  e.  A  ph  <->  ( E. x  x  e.  A  /\  ph )
)
87baibr 921 . . 3  |-  ( E. x  x  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
94, 8sylbi 121 . 2  |-  ( E. a  a  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
102, 9sylbir 135 1  |-  ( E. y  y  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1506    e. wcel 2167   E.wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192  df-rex 2481
This theorem is referenced by:  r19.45mv  3544  r19.44mv  3545  iunconstm  3924  fconstfvm  5780  frecabcl  6457  ltexprlemloc  7674  lcmgcdlem  12245  dvdsr02  13661
  Copyright terms: Public domain W3C validator