| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > r19.9rmv | Unicode version | ||
| Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| r19.9rmv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2259 | 
. . 3
 | |
| 2 | 1 | cbvexv 1933 | 
. 2
 | 
| 3 | eleq1 2259 | 
. . . 4
 | |
| 4 | 3 | cbvexv 1933 | 
. . 3
 | 
| 5 | df-rex 2481 | 
. . . . 5
 | |
| 6 | 19.41v 1917 | 
. . . . 5
 | |
| 7 | 5, 6 | bitri 184 | 
. . . 4
 | 
| 8 | 7 | baibr 921 | 
. . 3
 | 
| 9 | 4, 8 | sylbi 121 | 
. 2
 | 
| 10 | 2, 9 | sylbir 135 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-rex 2481 | 
| This theorem is referenced by: r19.45mv 3544 r19.44mv 3545 iunconstm 3924 fconstfvm 5780 frecabcl 6457 ltexprlemloc 7674 lcmgcdlem 12245 dvdsr02 13661 | 
| Copyright terms: Public domain | W3C validator |