ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmoeu2 Unicode version

Theorem exmoeu2 2093
Description: Existence implies "at most one" is equivalent to uniqueness. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
exmoeu2  |-  ( E. x ph  ->  ( E* x ph  <->  E! x ph ) )

Proof of Theorem exmoeu2
StepHypRef Expression
1 eu5 2092 . 2  |-  ( E! x ph  <->  ( E. x ph  /\  E* x ph ) )
21baibr 921 1  |-  ( E. x ph  ->  ( E* x ph  <->  E! x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1506   E!weu 2045   E*wmo 2046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049
This theorem is referenced by:  n0mmoeu  3467  fneu  5362
  Copyright terms: Public domain W3C validator