ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brinxp Unicode version

Theorem brinxp 4786
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
brinxp  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <-> 
A ( R  i^i  ( C  X.  D
) ) B ) )

Proof of Theorem brinxp
StepHypRef Expression
1 brinxp2 4785 . . 3  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )
2 df-3an 1004 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
31, 2bitri 184 . 2  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
43baibr 925 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <-> 
A ( R  i^i  ( C  X.  D
) ) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    e. wcel 2200    i^i cin 3196   class class class wbr 4082    X. cxp 4716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724
This theorem is referenced by:  poinxp  4787  soinxp  4788  seinxp  4789  isores2  5936  ltpiord  7502
  Copyright terms: Public domain W3C validator