ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brinxp Unicode version

Theorem brinxp 4761
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
brinxp  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <-> 
A ( R  i^i  ( C  X.  D
) ) B ) )

Proof of Theorem brinxp
StepHypRef Expression
1 brinxp2 4760 . . 3  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( A  e.  C  /\  B  e.  D  /\  A R B ) )
2 df-3an 983 . . 3  |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B )  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
31, 2bitri 184 . 2  |-  ( A ( R  i^i  ( C  X.  D ) ) B  <->  ( ( A  e.  C  /\  B  e.  D )  /\  A R B ) )
43baibr 922 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <-> 
A ( R  i^i  ( C  X.  D
) ) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2178    i^i cin 3173   class class class wbr 4059    X. cxp 4691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699
This theorem is referenced by:  poinxp  4762  soinxp  4763  seinxp  4764  isores2  5905  ltpiord  7467
  Copyright terms: Public domain W3C validator