Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeqsuc Unicode version

Theorem bdeqsuc 15527
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeqsuc  |- BOUNDED  x  =  suc  y
Distinct variable group:    x, y

Proof of Theorem bdeqsuc
StepHypRef Expression
1 bdcsuc 15526 . . . 4  |- BOUNDED  suc  y
21bdss 15510 . . 3  |- BOUNDED  x  C_  suc  y
3 bdcv 15494 . . . . . . 7  |- BOUNDED  x
43bdss 15510 . . . . . 6  |- BOUNDED  y  C_  x
53bdsnss 15519 . . . . . 6  |- BOUNDED  { y }  C_  x
64, 5ax-bdan 15461 . . . . 5  |- BOUNDED  ( y  C_  x  /\  { y }  C_  x )
7 unss 3337 . . . . 5  |-  ( ( y  C_  x  /\  { y }  C_  x
)  <->  ( y  u. 
{ y } ) 
C_  x )
86, 7bd0 15470 . . . 4  |- BOUNDED  ( y  u.  {
y } )  C_  x
9 df-suc 4406 . . . . 5  |-  suc  y  =  ( y  u. 
{ y } )
109sseq1i 3209 . . . 4  |-  ( suc  y  C_  x  <->  ( y  u.  { y } ) 
C_  x )
118, 10bd0r 15471 . . 3  |- BOUNDED  suc  y  C_  x
122, 11ax-bdan 15461 . 2  |- BOUNDED  ( x  C_  suc  y  /\  suc  y  C_  x )
13 eqss 3198 . 2  |-  ( x  =  suc  y  <->  ( x  C_ 
suc  y  /\  suc  y  C_  x ) )
1412, 13bd0r 15471 1  |- BOUNDED  x  =  suc  y
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    u. cun 3155    C_ wss 3157   {csn 3622   suc csuc 4400  BOUNDED wbd 15458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bd0 15459  ax-bdan 15461  ax-bdor 15462  ax-bdal 15464  ax-bdeq 15466  ax-bdel 15467  ax-bdsb 15468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-suc 4406  df-bdc 15487
This theorem is referenced by:  bj-bdsucel  15528  bj-nn0suc0  15596
  Copyright terms: Public domain W3C validator