Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeqsuc Unicode version

Theorem bdeqsuc 16016
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeqsuc  |- BOUNDED  x  =  suc  y
Distinct variable group:    x, y

Proof of Theorem bdeqsuc
StepHypRef Expression
1 bdcsuc 16015 . . . 4  |- BOUNDED  suc  y
21bdss 15999 . . 3  |- BOUNDED  x  C_  suc  y
3 bdcv 15983 . . . . . . 7  |- BOUNDED  x
43bdss 15999 . . . . . 6  |- BOUNDED  y  C_  x
53bdsnss 16008 . . . . . 6  |- BOUNDED  { y }  C_  x
64, 5ax-bdan 15950 . . . . 5  |- BOUNDED  ( y  C_  x  /\  { y }  C_  x )
7 unss 3355 . . . . 5  |-  ( ( y  C_  x  /\  { y }  C_  x
)  <->  ( y  u. 
{ y } ) 
C_  x )
86, 7bd0 15959 . . . 4  |- BOUNDED  ( y  u.  {
y } )  C_  x
9 df-suc 4436 . . . . 5  |-  suc  y  =  ( y  u. 
{ y } )
109sseq1i 3227 . . . 4  |-  ( suc  y  C_  x  <->  ( y  u.  { y } ) 
C_  x )
118, 10bd0r 15960 . . 3  |- BOUNDED  suc  y  C_  x
122, 11ax-bdan 15950 . 2  |- BOUNDED  ( x  C_  suc  y  /\  suc  y  C_  x )
13 eqss 3216 . 2  |-  ( x  =  suc  y  <->  ( x  C_ 
suc  y  /\  suc  y  C_  x ) )
1412, 13bd0r 15960 1  |- BOUNDED  x  =  suc  y
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    u. cun 3172    C_ wss 3174   {csn 3643   suc csuc 4430  BOUNDED wbd 15947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-bd0 15948  ax-bdan 15950  ax-bdor 15951  ax-bdal 15953  ax-bdeq 15955  ax-bdel 15956  ax-bdsb 15957
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-suc 4436  df-bdc 15976
This theorem is referenced by:  bj-bdsucel  16017  bj-nn0suc0  16085
  Copyright terms: Public domain W3C validator