Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeqsuc Unicode version

Theorem bdeqsuc 15373
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeqsuc  |- BOUNDED  x  =  suc  y
Distinct variable group:    x, y

Proof of Theorem bdeqsuc
StepHypRef Expression
1 bdcsuc 15372 . . . 4  |- BOUNDED  suc  y
21bdss 15356 . . 3  |- BOUNDED  x  C_  suc  y
3 bdcv 15340 . . . . . . 7  |- BOUNDED  x
43bdss 15356 . . . . . 6  |- BOUNDED  y  C_  x
53bdsnss 15365 . . . . . 6  |- BOUNDED  { y }  C_  x
64, 5ax-bdan 15307 . . . . 5  |- BOUNDED  ( y  C_  x  /\  { y }  C_  x )
7 unss 3333 . . . . 5  |-  ( ( y  C_  x  /\  { y }  C_  x
)  <->  ( y  u. 
{ y } ) 
C_  x )
86, 7bd0 15316 . . . 4  |- BOUNDED  ( y  u.  {
y } )  C_  x
9 df-suc 4402 . . . . 5  |-  suc  y  =  ( y  u. 
{ y } )
109sseq1i 3205 . . . 4  |-  ( suc  y  C_  x  <->  ( y  u.  { y } ) 
C_  x )
118, 10bd0r 15317 . . 3  |- BOUNDED  suc  y  C_  x
122, 11ax-bdan 15307 . 2  |- BOUNDED  ( x  C_  suc  y  /\  suc  y  C_  x )
13 eqss 3194 . 2  |-  ( x  =  suc  y  <->  ( x  C_ 
suc  y  /\  suc  y  C_  x ) )
1412, 13bd0r 15317 1  |- BOUNDED  x  =  suc  y
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    u. cun 3151    C_ wss 3153   {csn 3618   suc csuc 4396  BOUNDED wbd 15304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-bd0 15305  ax-bdan 15307  ax-bdor 15308  ax-bdal 15310  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-suc 4402  df-bdc 15333
This theorem is referenced by:  bj-bdsucel  15374  bj-nn0suc0  15442
  Copyright terms: Public domain W3C validator