![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeqsuc | Unicode version |
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bdeqsuc |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcsuc 14928 |
. . . 4
![]() ![]() ![]() | |
2 | 1 | bdss 14912 |
. . 3
![]() ![]() ![]() ![]() ![]() |
3 | bdcv 14896 |
. . . . . . 7
![]() ![]() | |
4 | 3 | bdss 14912 |
. . . . . 6
![]() ![]() ![]() ![]() |
5 | 3 | bdsnss 14921 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 4, 5 | ax-bdan 14863 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | unss 3321 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | bd0 14872 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | df-suc 4383 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 9 | sseq1i 3193 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | bd0r 14873 |
. . 3
![]() ![]() ![]() ![]() ![]() |
12 | 2, 11 | ax-bdan 14863 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | eqss 3182 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 12, 13 | bd0r 14873 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-bd0 14861 ax-bdan 14863 ax-bdor 14864 ax-bdal 14866 ax-bdeq 14868 ax-bdel 14869 ax-bdsb 14870 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-sn 3610 df-suc 4383 df-bdc 14889 |
This theorem is referenced by: bj-bdsucel 14930 bj-nn0suc0 14998 |
Copyright terms: Public domain | W3C validator |