Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeqsuc Unicode version

Theorem bdeqsuc 16244
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeqsuc  |- BOUNDED  x  =  suc  y
Distinct variable group:    x, y

Proof of Theorem bdeqsuc
StepHypRef Expression
1 bdcsuc 16243 . . . 4  |- BOUNDED  suc  y
21bdss 16227 . . 3  |- BOUNDED  x  C_  suc  y
3 bdcv 16211 . . . . . . 7  |- BOUNDED  x
43bdss 16227 . . . . . 6  |- BOUNDED  y  C_  x
53bdsnss 16236 . . . . . 6  |- BOUNDED  { y }  C_  x
64, 5ax-bdan 16178 . . . . 5  |- BOUNDED  ( y  C_  x  /\  { y }  C_  x )
7 unss 3378 . . . . 5  |-  ( ( y  C_  x  /\  { y }  C_  x
)  <->  ( y  u. 
{ y } ) 
C_  x )
86, 7bd0 16187 . . . 4  |- BOUNDED  ( y  u.  {
y } )  C_  x
9 df-suc 4462 . . . . 5  |-  suc  y  =  ( y  u. 
{ y } )
109sseq1i 3250 . . . 4  |-  ( suc  y  C_  x  <->  ( y  u.  { y } ) 
C_  x )
118, 10bd0r 16188 . . 3  |- BOUNDED  suc  y  C_  x
122, 11ax-bdan 16178 . 2  |- BOUNDED  ( x  C_  suc  y  /\  suc  y  C_  x )
13 eqss 3239 . 2  |-  ( x  =  suc  y  <->  ( x  C_ 
suc  y  /\  suc  y  C_  x ) )
1412, 13bd0r 16188 1  |- BOUNDED  x  =  suc  y
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    u. cun 3195    C_ wss 3197   {csn 3666   suc csuc 4456  BOUNDED wbd 16175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16176  ax-bdan 16178  ax-bdor 16179  ax-bdal 16181  ax-bdeq 16183  ax-bdel 16184  ax-bdsb 16185
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-suc 4462  df-bdc 16204
This theorem is referenced by:  bj-bdsucel  16245  bj-nn0suc0  16313
  Copyright terms: Public domain W3C validator