Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeqsuc Unicode version

Theorem bdeqsuc 15821
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeqsuc  |- BOUNDED  x  =  suc  y
Distinct variable group:    x, y

Proof of Theorem bdeqsuc
StepHypRef Expression
1 bdcsuc 15820 . . . 4  |- BOUNDED  suc  y
21bdss 15804 . . 3  |- BOUNDED  x  C_  suc  y
3 bdcv 15788 . . . . . . 7  |- BOUNDED  x
43bdss 15804 . . . . . 6  |- BOUNDED  y  C_  x
53bdsnss 15813 . . . . . 6  |- BOUNDED  { y }  C_  x
64, 5ax-bdan 15755 . . . . 5  |- BOUNDED  ( y  C_  x  /\  { y }  C_  x )
7 unss 3347 . . . . 5  |-  ( ( y  C_  x  /\  { y }  C_  x
)  <->  ( y  u. 
{ y } ) 
C_  x )
86, 7bd0 15764 . . . 4  |- BOUNDED  ( y  u.  {
y } )  C_  x
9 df-suc 4418 . . . . 5  |-  suc  y  =  ( y  u. 
{ y } )
109sseq1i 3219 . . . 4  |-  ( suc  y  C_  x  <->  ( y  u.  { y } ) 
C_  x )
118, 10bd0r 15765 . . 3  |- BOUNDED  suc  y  C_  x
122, 11ax-bdan 15755 . 2  |- BOUNDED  ( x  C_  suc  y  /\  suc  y  C_  x )
13 eqss 3208 . 2  |-  ( x  =  suc  y  <->  ( x  C_ 
suc  y  /\  suc  y  C_  x ) )
1412, 13bd0r 15765 1  |- BOUNDED  x  =  suc  y
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    u. cun 3164    C_ wss 3166   {csn 3633   suc csuc 4412  BOUNDED wbd 15752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-bd0 15753  ax-bdan 15755  ax-bdor 15756  ax-bdal 15758  ax-bdeq 15760  ax-bdel 15761  ax-bdsb 15762
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-suc 4418  df-bdc 15781
This theorem is referenced by:  bj-bdsucel  15822  bj-nn0suc0  15890
  Copyright terms: Public domain W3C validator