![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeqsuc | Unicode version |
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bdeqsuc |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcsuc 15372 |
. . . 4
![]() ![]() ![]() | |
2 | 1 | bdss 15356 |
. . 3
![]() ![]() ![]() ![]() ![]() |
3 | bdcv 15340 |
. . . . . . 7
![]() ![]() | |
4 | 3 | bdss 15356 |
. . . . . 6
![]() ![]() ![]() ![]() |
5 | 3 | bdsnss 15365 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 4, 5 | ax-bdan 15307 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | unss 3333 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | bd0 15316 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | df-suc 4402 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 9 | sseq1i 3205 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | bd0r 15317 |
. . 3
![]() ![]() ![]() ![]() ![]() |
12 | 2, 11 | ax-bdan 15307 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | eqss 3194 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 12, 13 | bd0r 15317 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-bd0 15305 ax-bdan 15307 ax-bdor 15308 ax-bdal 15310 ax-bdeq 15312 ax-bdel 15313 ax-bdsb 15314 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-suc 4402 df-bdc 15333 |
This theorem is referenced by: bj-bdsucel 15374 bj-nn0suc0 15442 |
Copyright terms: Public domain | W3C validator |