Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeqsuc Unicode version

Theorem bdeqsuc 14929
Description: Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeqsuc  |- BOUNDED  x  =  suc  y
Distinct variable group:    x, y

Proof of Theorem bdeqsuc
StepHypRef Expression
1 bdcsuc 14928 . . . 4  |- BOUNDED  suc  y
21bdss 14912 . . 3  |- BOUNDED  x  C_  suc  y
3 bdcv 14896 . . . . . . 7  |- BOUNDED  x
43bdss 14912 . . . . . 6  |- BOUNDED  y  C_  x
53bdsnss 14921 . . . . . 6  |- BOUNDED  { y }  C_  x
64, 5ax-bdan 14863 . . . . 5  |- BOUNDED  ( y  C_  x  /\  { y }  C_  x )
7 unss 3321 . . . . 5  |-  ( ( y  C_  x  /\  { y }  C_  x
)  <->  ( y  u. 
{ y } ) 
C_  x )
86, 7bd0 14872 . . . 4  |- BOUNDED  ( y  u.  {
y } )  C_  x
9 df-suc 4383 . . . . 5  |-  suc  y  =  ( y  u. 
{ y } )
109sseq1i 3193 . . . 4  |-  ( suc  y  C_  x  <->  ( y  u.  { y } ) 
C_  x )
118, 10bd0r 14873 . . 3  |- BOUNDED  suc  y  C_  x
122, 11ax-bdan 14863 . 2  |- BOUNDED  ( x  C_  suc  y  /\  suc  y  C_  x )
13 eqss 3182 . 2  |-  ( x  =  suc  y  <->  ( x  C_ 
suc  y  /\  suc  y  C_  x ) )
1412, 13bd0r 14873 1  |- BOUNDED  x  =  suc  y
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1363    u. cun 3139    C_ wss 3141   {csn 3604   suc csuc 4377  BOUNDED wbd 14860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-bd0 14861  ax-bdan 14863  ax-bdor 14864  ax-bdal 14866  ax-bdeq 14868  ax-bdel 14869  ax-bdsb 14870
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-suc 4383  df-bdc 14889
This theorem is referenced by:  bj-bdsucel  14930  bj-nn0suc0  14998
  Copyright terms: Public domain W3C validator