Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axun2 Unicode version

Theorem bj-axun2 13797
Description: axun2 4413 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axun2  |-  E. y A. z ( z  e.  y  <->  E. w ( z  e.  w  /\  w  e.  x ) )
Distinct variable group:    x, w, y, z

Proof of Theorem bj-axun2
StepHypRef Expression
1 ax-bdel 13703 . . . 4  |- BOUNDED  z  e.  w
21ax-bdex 13701 . . 3  |- BOUNDED  E. w  e.  x  z  e.  w
3 df-rex 2450 . . . 4  |-  ( E. w  e.  x  z  e.  w  <->  E. w
( w  e.  x  /\  z  e.  w
) )
4 exancom 1596 . . . 4  |-  ( E. w ( w  e.  x  /\  z  e.  w )  <->  E. w
( z  e.  w  /\  w  e.  x
) )
53, 4bitri 183 . . 3  |-  ( E. w  e.  x  z  e.  w  <->  E. w
( z  e.  w  /\  w  e.  x
) )
62, 5bd0 13706 . 2  |- BOUNDED  E. w ( z  e.  w  /\  w  e.  x )
7 ax-un 4411 . 2  |-  E. y A. z ( E. w
( z  e.  w  /\  w  e.  x
)  ->  z  e.  y )
86, 7bdbm1.3ii 13773 1  |-  E. y A. z ( z  e.  y  <->  E. w ( z  e.  w  /\  w  e.  x ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   A.wal 1341   E.wex 1480   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-14 2139  ax-un 4411  ax-bd0 13695  ax-bdex 13701  ax-bdel 13703  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-rex 2450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator