Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdph Unicode version

Theorem bdph 14687
Description: A formula which defines (by class abstraction) a bounded class is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdph.1  |- BOUNDED  { x  |  ph }
Assertion
Ref Expression
bdph  |- BOUNDED  ph

Proof of Theorem bdph
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bdph.1 . . . . 5  |- BOUNDED  { x  |  ph }
21bdeli 14683 . . . 4  |- BOUNDED  y  e.  { x  |  ph }
3 df-clab 2164 . . . 4  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
42, 3bd0 14661 . . 3  |- BOUNDED  [ y  /  x ] ph
54ax-bdsb 14659 . 2  |- BOUNDED  [ x  /  y ] [ y  /  x ] ph
6 sbid2v 1996 . 2  |-  ( [ x  /  y ] [ y  /  x ] ph  <->  ph )
75, 6bd0 14661 1  |- BOUNDED  ph
Colors of variables: wff set class
Syntax hints:   [wsb 1762    e. wcel 2148   {cab 2163  BOUNDED wbd 14649  BOUNDED wbdc 14677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-bd0 14650  ax-bdsb 14659
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-bdc 14678
This theorem is referenced by:  bds  14688
  Copyright terms: Public domain W3C validator