Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdph Unicode version

Theorem bdph 15985
Description: A formula which defines (by class abstraction) a bounded class is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdph.1  |- BOUNDED  { x  |  ph }
Assertion
Ref Expression
bdph  |- BOUNDED  ph

Proof of Theorem bdph
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bdph.1 . . . . 5  |- BOUNDED  { x  |  ph }
21bdeli 15981 . . . 4  |- BOUNDED  y  e.  { x  |  ph }
3 df-clab 2194 . . . 4  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
42, 3bd0 15959 . . 3  |- BOUNDED  [ y  /  x ] ph
54ax-bdsb 15957 . 2  |- BOUNDED  [ x  /  y ] [ y  /  x ] ph
6 sbid2v 2025 . 2  |-  ( [ x  /  y ] [ y  /  x ] ph  <->  ph )
75, 6bd0 15959 1  |- BOUNDED  ph
Colors of variables: wff set class
Syntax hints:   [wsb 1786    e. wcel 2178   {cab 2193  BOUNDED wbd 15947  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-bd0 15948  ax-bdsb 15957
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2194  df-bdc 15976
This theorem is referenced by:  bds  15986
  Copyright terms: Public domain W3C validator