Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsnss Unicode version

Theorem bdsnss 14185
Description: Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdsnss.1  |- BOUNDED  A
Assertion
Ref Expression
bdsnss  |- BOUNDED  { x }  C_  A
Distinct variable group:    x, A

Proof of Theorem bdsnss
StepHypRef Expression
1 bdsnss.1 . . 3  |- BOUNDED  A
21bdeli 14158 . 2  |- BOUNDED  x  e.  A
3 vex 2738 . . 3  |-  x  e. 
_V
43snss 3724 . 2  |-  ( x  e.  A  <->  { x }  C_  A )
52, 4bd0 14136 1  |- BOUNDED  { x }  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2146    C_ wss 3127   {csn 3589  BOUNDED wbd 14124  BOUNDED wbdc 14152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-bd0 14125
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-ss 3140  df-sn 3595  df-bdc 14153
This theorem is referenced by:  bdvsn  14186  bdeqsuc  14193
  Copyright terms: Public domain W3C validator