Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsnss | Unicode version |
Description: Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdsnss.1 | BOUNDED |
Ref | Expression |
---|---|
bdsnss | BOUNDED |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdsnss.1 | . . 3 BOUNDED | |
2 | 1 | bdeli 14158 | . 2 BOUNDED |
3 | vex 2738 | . . 3 | |
4 | 3 | snss 3724 | . 2 |
5 | 2, 4 | bd0 14136 | 1 BOUNDED |
Colors of variables: wff set class |
Syntax hints: wcel 2146 wss 3127 csn 3589 BOUNDED wbd 14124 BOUNDED wbdc 14152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-bd0 14125 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-ss 3140 df-sn 3595 df-bdc 14153 |
This theorem is referenced by: bdvsn 14186 bdeqsuc 14193 |
Copyright terms: Public domain | W3C validator |