Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsnss Unicode version

Theorem bdsnss 13755
Description: Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdsnss.1  |- BOUNDED  A
Assertion
Ref Expression
bdsnss  |- BOUNDED  { x }  C_  A
Distinct variable group:    x, A

Proof of Theorem bdsnss
StepHypRef Expression
1 bdsnss.1 . . 3  |- BOUNDED  A
21bdeli 13728 . 2  |- BOUNDED  x  e.  A
3 vex 2729 . . 3  |-  x  e. 
_V
43snss 3702 . 2  |-  ( x  e.  A  <->  { x }  C_  A )
52, 4bd0 13706 1  |- BOUNDED  { x }  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2136    C_ wss 3116   {csn 3576  BOUNDED wbd 13694  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bd0 13695
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-sn 3582  df-bdc 13723
This theorem is referenced by:  bdvsn  13756  bdeqsuc  13763
  Copyright terms: Public domain W3C validator