| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcdif | Unicode version | ||
| Description: The difference of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdcdif.1 |
|
| bdcdif.2 |
|
| Ref | Expression |
|---|---|
| bdcdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcdif.1 |
. . . . 5
| |
| 2 | 1 | bdeli 15715 |
. . . 4
|
| 3 | bdcdif.2 |
. . . . . 6
| |
| 4 | 3 | bdeli 15715 |
. . . . 5
|
| 5 | 4 | ax-bdn 15686 |
. . . 4
|
| 6 | 2, 5 | ax-bdan 15684 |
. . 3
|
| 7 | 6 | bdcab 15718 |
. 2
|
| 8 | df-dif 3167 |
. 2
| |
| 9 | 7, 8 | bdceqir 15713 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 ax-bd0 15682 ax-bdan 15684 ax-bdn 15686 ax-bdsb 15691 |
| This theorem depends on definitions: df-bi 117 df-clab 2191 df-cleq 2197 df-clel 2200 df-dif 3167 df-bdc 15710 |
| This theorem is referenced by: bdcnulALT 15735 |
| Copyright terms: Public domain | W3C validator |