Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcdif GIF version

Theorem bdcdif 11409
Description: The difference of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdcdif.1 BOUNDED 𝐴
bdcdif.2 BOUNDED 𝐵
Assertion
Ref Expression
bdcdif BOUNDED (𝐴𝐵)

Proof of Theorem bdcdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bdcdif.1 . . . . 5 BOUNDED 𝐴
21bdeli 11394 . . . 4 BOUNDED 𝑥𝐴
3 bdcdif.2 . . . . . 6 BOUNDED 𝐵
43bdeli 11394 . . . . 5 BOUNDED 𝑥𝐵
54ax-bdn 11365 . . . 4 BOUNDED ¬ 𝑥𝐵
62, 5ax-bdan 11363 . . 3 BOUNDED (𝑥𝐴 ∧ ¬ 𝑥𝐵)
76bdcab 11397 . 2 BOUNDED {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
8 df-dif 2999 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
97, 8bdceqir 11392 1 BOUNDED (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102  wcel 1438  {cab 2074  cdif 2994  BOUNDED wbdc 11388
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-17 1464  ax-ial 1472  ax-ext 2070  ax-bd0 11361  ax-bdan 11363  ax-bdn 11365  ax-bdsb 11370
This theorem depends on definitions:  df-bi 115  df-clab 2075  df-cleq 2081  df-clel 2084  df-dif 2999  df-bdc 11389
This theorem is referenced by:  bdcnulALT  11414
  Copyright terms: Public domain W3C validator