![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcdif | GIF version |
Description: The difference of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdcdif.1 | ⊢ BOUNDED 𝐴 |
bdcdif.2 | ⊢ BOUNDED 𝐵 |
Ref | Expression |
---|---|
bdcdif | ⊢ BOUNDED (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcdif.1 | . . . . 5 ⊢ BOUNDED 𝐴 | |
2 | 1 | bdeli 14683 | . . . 4 ⊢ BOUNDED 𝑥 ∈ 𝐴 |
3 | bdcdif.2 | . . . . . 6 ⊢ BOUNDED 𝐵 | |
4 | 3 | bdeli 14683 | . . . . 5 ⊢ BOUNDED 𝑥 ∈ 𝐵 |
5 | 4 | ax-bdn 14654 | . . . 4 ⊢ BOUNDED ¬ 𝑥 ∈ 𝐵 |
6 | 2, 5 | ax-bdan 14652 | . . 3 ⊢ BOUNDED (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) |
7 | 6 | bdcab 14686 | . 2 ⊢ BOUNDED {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} |
8 | df-dif 3133 | . 2 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} | |
9 | 7, 8 | bdceqir 14681 | 1 ⊢ BOUNDED (𝐴 ∖ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ∈ wcel 2148 {cab 2163 ∖ cdif 3128 BOUNDED wbdc 14677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 ax-bd0 14650 ax-bdan 14652 ax-bdn 14654 ax-bdsb 14659 |
This theorem depends on definitions: df-bi 117 df-clab 2164 df-cleq 2170 df-clel 2173 df-dif 3133 df-bdc 14678 |
This theorem is referenced by: bdcnulALT 14703 |
Copyright terms: Public domain | W3C validator |