Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcdif GIF version

Theorem bdcdif 15871
Description: The difference of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdcdif.1 BOUNDED 𝐴
bdcdif.2 BOUNDED 𝐵
Assertion
Ref Expression
bdcdif BOUNDED (𝐴𝐵)

Proof of Theorem bdcdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bdcdif.1 . . . . 5 BOUNDED 𝐴
21bdeli 15856 . . . 4 BOUNDED 𝑥𝐴
3 bdcdif.2 . . . . . 6 BOUNDED 𝐵
43bdeli 15856 . . . . 5 BOUNDED 𝑥𝐵
54ax-bdn 15827 . . . 4 BOUNDED ¬ 𝑥𝐵
62, 5ax-bdan 15825 . . 3 BOUNDED (𝑥𝐴 ∧ ¬ 𝑥𝐵)
76bdcab 15859 . 2 BOUNDED {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
8 df-dif 3169 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
97, 8bdceqir 15854 1 BOUNDED (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wcel 2177  {cab 2192  cdif 3164  BOUNDED wbdc 15850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2188  ax-bd0 15823  ax-bdan 15825  ax-bdn 15827  ax-bdsb 15832
This theorem depends on definitions:  df-bi 117  df-clab 2193  df-cleq 2199  df-clel 2202  df-dif 3169  df-bdc 15851
This theorem is referenced by:  bdcnulALT  15876
  Copyright terms: Public domain W3C validator