Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdciun Unicode version

Theorem bdciun 15108
Description: The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdciun.1  |- BOUNDED  A
Assertion
Ref Expression
bdciun  |- BOUNDED 
U_ x  e.  y  A
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem bdciun
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdciun.1 . . . . 5  |- BOUNDED  A
21bdeli 15076 . . . 4  |- BOUNDED  z  e.  A
32ax-bdex 15049 . . 3  |- BOUNDED  E. x  e.  y  z  e.  A
43bdcab 15079 . 2  |- BOUNDED  { z  |  E. x  e.  y  z  e.  A }
5 df-iun 3903 . 2  |-  U_ x  e.  y  A  =  { z  |  E. x  e.  y  z  e.  A }
64, 5bdceqir 15074 1  |- BOUNDED 
U_ x  e.  y  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   {cab 2175   E.wrex 2469   U_ciun 3901  BOUNDED wbdc 15070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2171  ax-bd0 15043  ax-bdex 15049  ax-bdsb 15052
This theorem depends on definitions:  df-bi 117  df-clab 2176  df-cleq 2182  df-clel 2185  df-iun 3903  df-bdc 15071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator