Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcnulALT GIF version

Theorem bdcnulALT 15358
Description: Alternate proof of bdcnul 15357. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 15336, or use the corresponding characterizations of its elements followed by bdelir 15339. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bdcnulALT BOUNDED

Proof of Theorem bdcnulALT
StepHypRef Expression
1 bdcvv 15349 . . 3 BOUNDED V
21, 1bdcdif 15353 . 2 BOUNDED (V ∖ V)
3 df-nul 3447 . 2 ∅ = (V ∖ V)
42, 3bdceqir 15336 1 BOUNDED
Colors of variables: wff set class
Syntax hints:  Vcvv 2760  cdif 3150  c0 3446  BOUNDED wbdc 15332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175  ax-bd0 15305  ax-bdim 15306  ax-bdan 15307  ax-bdn 15309  ax-bdeq 15312  ax-bdsb 15314
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762  df-dif 3155  df-nul 3447  df-bdc 15333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator