Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcnulALT | GIF version |
Description: Alternate proof of bdcnul 13900. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 13879, or use the corresponding characterizations of its elements followed by bdelir 13882. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bdcnulALT | ⊢ BOUNDED ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcvv 13892 | . . 3 ⊢ BOUNDED V | |
2 | 1, 1 | bdcdif 13896 | . 2 ⊢ BOUNDED (V ∖ V) |
3 | df-nul 3415 | . 2 ⊢ ∅ = (V ∖ V) | |
4 | 2, 3 | bdceqir 13879 | 1 ⊢ BOUNDED ∅ |
Colors of variables: wff set class |
Syntax hints: Vcvv 2730 ∖ cdif 3118 ∅c0 3414 BOUNDED wbdc 13875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 ax-bd0 13848 ax-bdim 13849 ax-bdan 13850 ax-bdn 13852 ax-bdeq 13855 ax-bdsb 13857 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 df-dif 3123 df-nul 3415 df-bdc 13876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |