Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcnulALT GIF version

Theorem bdcnulALT 14187
Description: Alternate proof of bdcnul 14186. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 14165, or use the corresponding characterizations of its elements followed by bdelir 14168. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bdcnulALT BOUNDED

Proof of Theorem bdcnulALT
StepHypRef Expression
1 bdcvv 14178 . . 3 BOUNDED V
21, 1bdcdif 14182 . 2 BOUNDED (V ∖ V)
3 df-nul 3421 . 2 ∅ = (V ∖ V)
42, 3bdceqir 14165 1 BOUNDED
Colors of variables: wff set class
Syntax hints:  Vcvv 2735  cdif 3124  c0 3420  BOUNDED wbdc 14161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-ext 2157  ax-bd0 14134  ax-bdim 14135  ax-bdan 14136  ax-bdn 14138  ax-bdeq 14141  ax-bdsb 14143
This theorem depends on definitions:  df-bi 117  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-v 2737  df-dif 3129  df-nul 3421  df-bdc 14162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator