Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcnulALT GIF version

Theorem bdcnulALT 13901
Description: Alternate proof of bdcnul 13900. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 13879, or use the corresponding characterizations of its elements followed by bdelir 13882. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bdcnulALT BOUNDED

Proof of Theorem bdcnulALT
StepHypRef Expression
1 bdcvv 13892 . . 3 BOUNDED V
21, 1bdcdif 13896 . 2 BOUNDED (V ∖ V)
3 df-nul 3415 . 2 ∅ = (V ∖ V)
42, 3bdceqir 13879 1 BOUNDED
Colors of variables: wff set class
Syntax hints:  Vcvv 2730  cdif 3118  c0 3414  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152  ax-bd0 13848  ax-bdim 13849  ax-bdan 13850  ax-bdn 13852  ax-bdeq 13855  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732  df-dif 3123  df-nul 3415  df-bdc 13876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator