Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcnulALT GIF version

Theorem bdcnulALT 14758
Description: Alternate proof of bdcnul 14757. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 14736, or use the corresponding characterizations of its elements followed by bdelir 14739. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bdcnulALT BOUNDED

Proof of Theorem bdcnulALT
StepHypRef Expression
1 bdcvv 14749 . . 3 BOUNDED V
21, 1bdcdif 14753 . 2 BOUNDED (V ∖ V)
3 df-nul 3425 . 2 ∅ = (V ∖ V)
42, 3bdceqir 14736 1 BOUNDED
Colors of variables: wff set class
Syntax hints:  Vcvv 2739  cdif 3128  c0 3424  BOUNDED wbdc 14732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159  ax-bd0 14705  ax-bdim 14706  ax-bdan 14707  ax-bdn 14709  ax-bdeq 14712  ax-bdsb 14714
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741  df-dif 3133  df-nul 3425  df-bdc 14733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator