Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcnulALT GIF version

Theorem bdcnulALT 15666
Description: Alternate proof of bdcnul 15665. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 15644, or use the corresponding characterizations of its elements followed by bdelir 15647. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bdcnulALT BOUNDED

Proof of Theorem bdcnulALT
StepHypRef Expression
1 bdcvv 15657 . . 3 BOUNDED V
21, 1bdcdif 15661 . 2 BOUNDED (V ∖ V)
3 df-nul 3460 . 2 ∅ = (V ∖ V)
42, 3bdceqir 15644 1 BOUNDED
Colors of variables: wff set class
Syntax hints:  Vcvv 2771  cdif 3162  c0 3459  BOUNDED wbdc 15640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-ext 2186  ax-bd0 15613  ax-bdim 15614  ax-bdan 15615  ax-bdn 15617  ax-bdeq 15620  ax-bdsb 15622
This theorem depends on definitions:  df-bi 117  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-v 2773  df-dif 3167  df-nul 3460  df-bdc 15641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator