Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeq0 Unicode version

Theorem bdeq0 15803
Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeq0  |- BOUNDED  x  =  (/)

Proof of Theorem bdeq0
StepHypRef Expression
1 bdcnul 15801 . . 3  |- BOUNDED  (/)
21bdss 15800 . 2  |- BOUNDED  x  C_  (/)
3 0ss 3499 . . 3  |-  (/)  C_  x
4 eqss 3208 . . 3  |-  ( x  =  (/)  <->  ( x  C_  (/) 
/\  (/)  C_  x )
)
53, 4mpbiran2 944 . 2  |-  ( x  =  (/)  <->  x  C_  (/) )
62, 5bd0r 15761 1  |- BOUNDED  x  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    C_ wss 3166   (/)c0 3460  BOUNDED wbd 15748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-bd0 15749  ax-bdim 15750  ax-bdn 15753  ax-bdal 15754  ax-bdeq 15756
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461  df-bdc 15777
This theorem is referenced by:  bj-bd0el  15804  bj-nn0suc0  15886
  Copyright terms: Public domain W3C validator