Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeq0 Unicode version

Theorem bdeq0 16002
Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeq0  |- BOUNDED  x  =  (/)

Proof of Theorem bdeq0
StepHypRef Expression
1 bdcnul 16000 . . 3  |- BOUNDED  (/)
21bdss 15999 . 2  |- BOUNDED  x  C_  (/)
3 0ss 3507 . . 3  |-  (/)  C_  x
4 eqss 3216 . . 3  |-  ( x  =  (/)  <->  ( x  C_  (/) 
/\  (/)  C_  x )
)
53, 4mpbiran2 944 . 2  |-  ( x  =  (/)  <->  x  C_  (/) )
62, 5bd0r 15960 1  |- BOUNDED  x  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    C_ wss 3174   (/)c0 3468  BOUNDED wbd 15947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-bd0 15948  ax-bdim 15949  ax-bdn 15952  ax-bdal 15953  ax-bdeq 15955
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-bdc 15976
This theorem is referenced by:  bj-bd0el  16003  bj-nn0suc0  16085
  Copyright terms: Public domain W3C validator