Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeq0 Unicode version

Theorem bdeq0 14704
Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeq0  |- BOUNDED  x  =  (/)

Proof of Theorem bdeq0
StepHypRef Expression
1 bdcnul 14702 . . 3  |- BOUNDED  (/)
21bdss 14701 . 2  |- BOUNDED  x  C_  (/)
3 0ss 3463 . . 3  |-  (/)  C_  x
4 eqss 3172 . . 3  |-  ( x  =  (/)  <->  ( x  C_  (/) 
/\  (/)  C_  x )
)
53, 4mpbiran2 941 . 2  |-  ( x  =  (/)  <->  x  C_  (/) )
62, 5bd0r 14662 1  |- BOUNDED  x  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1353    C_ wss 3131   (/)c0 3424  BOUNDED wbd 14649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-bd0 14650  ax-bdim 14651  ax-bdn 14654  ax-bdal 14655  ax-bdeq 14657
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-nul 3425  df-bdc 14678
This theorem is referenced by:  bj-bd0el  14705  bj-nn0suc0  14787
  Copyright terms: Public domain W3C validator