Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeq0 | Unicode version |
Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bdeq0 | BOUNDED |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcnul 13900 | . . 3 BOUNDED | |
2 | 1 | bdss 13899 | . 2 BOUNDED |
3 | 0ss 3453 | . . 3 | |
4 | eqss 3162 | . . 3 | |
5 | 3, 4 | mpbiran2 936 | . 2 |
6 | 2, 5 | bd0r 13860 | 1 BOUNDED |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wss 3121 c0 3414 BOUNDED wbd 13847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-bd0 13848 ax-bdim 13849 ax-bdn 13852 ax-bdal 13853 ax-bdeq 13855 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-bdc 13876 |
This theorem is referenced by: bj-bd0el 13903 bj-nn0suc0 13985 |
Copyright terms: Public domain | W3C validator |