Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeq0 Unicode version

Theorem bdeq0 15429
Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeq0  |- BOUNDED  x  =  (/)

Proof of Theorem bdeq0
StepHypRef Expression
1 bdcnul 15427 . . 3  |- BOUNDED  (/)
21bdss 15426 . 2  |- BOUNDED  x  C_  (/)
3 0ss 3486 . . 3  |-  (/)  C_  x
4 eqss 3195 . . 3  |-  ( x  =  (/)  <->  ( x  C_  (/) 
/\  (/)  C_  x )
)
53, 4mpbiran2 943 . 2  |-  ( x  =  (/)  <->  x  C_  (/) )
62, 5bd0r 15387 1  |- BOUNDED  x  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    C_ wss 3154   (/)c0 3447  BOUNDED wbd 15374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-bd0 15375  ax-bdim 15376  ax-bdn 15379  ax-bdal 15380  ax-bdeq 15382
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-dif 3156  df-in 3160  df-ss 3167  df-nul 3448  df-bdc 15403
This theorem is referenced by:  bj-bd0el  15430  bj-nn0suc0  15512
  Copyright terms: Public domain W3C validator