| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeq0 | Unicode version | ||
| Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| bdeq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcnul 15801 |
. . 3
| |
| 2 | 1 | bdss 15800 |
. 2
|
| 3 | 0ss 3499 |
. . 3
| |
| 4 | eqss 3208 |
. . 3
| |
| 5 | 3, 4 | mpbiran2 944 |
. 2
|
| 6 | 2, 5 | bd0r 15761 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-bd0 15749 ax-bdim 15750 ax-bdn 15753 ax-bdal 15754 ax-bdeq 15756 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 df-bdc 15777 |
| This theorem is referenced by: bj-bd0el 15804 bj-nn0suc0 15886 |
| Copyright terms: Public domain | W3C validator |