Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeq0 Unicode version

Theorem bdeq0 16230
Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeq0  |- BOUNDED  x  =  (/)

Proof of Theorem bdeq0
StepHypRef Expression
1 bdcnul 16228 . . 3  |- BOUNDED  (/)
21bdss 16227 . 2  |- BOUNDED  x  C_  (/)
3 0ss 3530 . . 3  |-  (/)  C_  x
4 eqss 3239 . . 3  |-  ( x  =  (/)  <->  ( x  C_  (/) 
/\  (/)  C_  x )
)
53, 4mpbiran2 947 . 2  |-  ( x  =  (/)  <->  x  C_  (/) )
62, 5bd0r 16188 1  |- BOUNDED  x  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    C_ wss 3197   (/)c0 3491  BOUNDED wbd 16175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16176  ax-bdim 16177  ax-bdn 16180  ax-bdal 16181  ax-bdeq 16183
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-bdc 16204
This theorem is referenced by:  bj-bd0el  16231  bj-nn0suc0  16313
  Copyright terms: Public domain W3C validator