ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgss2 Unicode version

Theorem tgss2 14753
Description: A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgss2  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  ( ( topGen `
 B )  C_  ( topGen `  C )  <->  A. x  e.  U. B A. y  e.  B  ( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
Distinct variable groups:    x, y, z, B    x, C, y, z    x, V, y
Allowed substitution hint:    V( z)

Proof of Theorem tgss2
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  U. B  = 
U. C )
2 uniexg 4530 . . . . . 6  |-  ( B  e.  V  ->  U. B  e.  _V )
32adantr 276 . . . . 5  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  U. B  e. 
_V )
41, 3eqeltrrd 2307 . . . 4  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  U. C  e. 
_V )
5 uniexb 4564 . . . 4  |-  ( C  e.  _V  <->  U. C  e. 
_V )
64, 5sylibr 134 . . 3  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  C  e.  _V )
7 tgss3 14752 . . 3  |-  ( ( B  e.  V  /\  C  e.  _V )  ->  ( ( topGen `  B
)  C_  ( topGen `  C )  <->  B  C_  ( topGen `
 C ) ) )
86, 7syldan 282 . 2  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  ( ( topGen `
 B )  C_  ( topGen `  C )  <->  B 
C_  ( topGen `  C
) ) )
9 eltg2b 14728 . . . . . . 7  |-  ( C  e.  _V  ->  (
y  e.  ( topGen `  C )  <->  A. x  e.  y  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) )
106, 9syl 14 . . . . . 6  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  ( y  e.  ( topGen `  C )  <->  A. x  e.  y  E. z  e.  C  (
x  e.  z  /\  z  C_  y ) ) )
11 elunii 3893 . . . . . . . . 9  |-  ( ( x  e.  y  /\  y  e.  B )  ->  x  e.  U. B
)
1211ancoms 268 . . . . . . . 8  |-  ( ( y  e.  B  /\  x  e.  y )  ->  x  e.  U. B
)
13 biimt 241 . . . . . . . 8  |-  ( x  e.  U. B  -> 
( E. z  e.  C  ( x  e.  z  /\  z  C_  y )  <->  ( x  e.  U. B  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
1412, 13syl 14 . . . . . . 7  |-  ( ( y  e.  B  /\  x  e.  y )  ->  ( E. z  e.  C  ( x  e.  z  /\  z  C_  y )  <->  ( x  e.  U. B  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
1514ralbidva 2526 . . . . . 6  |-  ( y  e.  B  ->  ( A. x  e.  y  E. z  e.  C  ( x  e.  z  /\  z  C_  y )  <->  A. x  e.  y 
( x  e.  U. B  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
1610, 15sylan9bb 462 . . . . 5  |-  ( ( ( B  e.  V  /\  U. B  =  U. C )  /\  y  e.  B )  ->  (
y  e.  ( topGen `  C )  <->  A. x  e.  y  ( x  e.  U. B  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
17 ralcom3 2699 . . . . 5  |-  ( A. x  e.  y  (
x  e.  U. B  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) )  <->  A. x  e.  U. B ( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) )
1816, 17bitrdi 196 . . . 4  |-  ( ( ( B  e.  V  /\  U. B  =  U. C )  /\  y  e.  B )  ->  (
y  e.  ( topGen `  C )  <->  A. x  e.  U. B ( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
1918ralbidva 2526 . . 3  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  ( A. y  e.  B  y  e.  ( topGen `  C )  <->  A. y  e.  B  A. x  e.  U. B ( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
20 dfss3 3213 . . 3  |-  ( B 
C_  ( topGen `  C
)  <->  A. y  e.  B  y  e.  ( topGen `  C ) )
21 ralcom 2694 . . 3  |-  ( A. x  e.  U. B A. y  e.  B  (
x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) )  <->  A. y  e.  B  A. x  e.  U. B
( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) )
2219, 20, 213bitr4g 223 . 2  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  ( B  C_  ( topGen `  C )  <->  A. x  e.  U. B A. y  e.  B  ( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
238, 22bitrd 188 1  |-  ( ( B  e.  V  /\  U. B  =  U. C
)  ->  ( ( topGen `
 B )  C_  ( topGen `  C )  <->  A. x  e.  U. B A. y  e.  B  ( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   _Vcvv 2799    C_ wss 3197   U.cuni 3888   ` cfv 5318   topGenctg 13287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-topgen 13293
This theorem is referenced by:  metss  15168
  Copyright terms: Public domain W3C validator