Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tgss2 | Unicode version |
Description: A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tgss2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 | |
2 | uniexg 4422 | . . . . . 6 | |
3 | 2 | adantr 274 | . . . . 5 |
4 | 1, 3 | eqeltrrd 2248 | . . . 4 |
5 | uniexb 4456 | . . . 4 | |
6 | 4, 5 | sylibr 133 | . . 3 |
7 | tgss3 12793 | . . 3 | |
8 | 6, 7 | syldan 280 | . 2 |
9 | eltg2b 12769 | . . . . . . 7 | |
10 | 6, 9 | syl 14 | . . . . . 6 |
11 | elunii 3799 | . . . . . . . . 9 | |
12 | 11 | ancoms 266 | . . . . . . . 8 |
13 | biimt 240 | . . . . . . . 8 | |
14 | 12, 13 | syl 14 | . . . . . . 7 |
15 | 14 | ralbidva 2466 | . . . . . 6 |
16 | 10, 15 | sylan9bb 459 | . . . . 5 |
17 | ralcom3 2637 | . . . . 5 | |
18 | 16, 17 | bitrdi 195 | . . . 4 |
19 | 18 | ralbidva 2466 | . . 3 |
20 | dfss3 3137 | . . 3 | |
21 | ralcom 2633 | . . 3 | |
22 | 19, 20, 21 | 3bitr4g 222 | . 2 |
23 | 8, 22 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 cvv 2730 wss 3121 cuni 3794 cfv 5196 ctg 12580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-topgen 12586 |
This theorem is referenced by: metss 13209 |
Copyright terms: Public domain | W3C validator |