| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgss2 | Unicode version | ||
| Description: A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgss2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . 5
| |
| 2 | uniexg 4475 |
. . . . . 6
| |
| 3 | 2 | adantr 276 |
. . . . 5
|
| 4 | 1, 3 | eqeltrrd 2274 |
. . . 4
|
| 5 | uniexb 4509 |
. . . 4
| |
| 6 | 4, 5 | sylibr 134 |
. . 3
|
| 7 | tgss3 14398 |
. . 3
| |
| 8 | 6, 7 | syldan 282 |
. 2
|
| 9 | eltg2b 14374 |
. . . . . . 7
| |
| 10 | 6, 9 | syl 14 |
. . . . . 6
|
| 11 | elunii 3845 |
. . . . . . . . 9
| |
| 12 | 11 | ancoms 268 |
. . . . . . . 8
|
| 13 | biimt 241 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
|
| 15 | 14 | ralbidva 2493 |
. . . . . 6
|
| 16 | 10, 15 | sylan9bb 462 |
. . . . 5
|
| 17 | ralcom3 2665 |
. . . . 5
| |
| 18 | 16, 17 | bitrdi 196 |
. . . 4
|
| 19 | 18 | ralbidva 2493 |
. . 3
|
| 20 | dfss3 3173 |
. . 3
| |
| 21 | ralcom 2660 |
. . 3
| |
| 22 | 19, 20, 21 | 3bitr4g 223 |
. 2
|
| 23 | 8, 22 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-topgen 12962 |
| This theorem is referenced by: metss 14814 |
| Copyright terms: Public domain | W3C validator |