| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgss2 | Unicode version | ||
| Description: A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgss2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . 5
| |
| 2 | uniexg 4504 |
. . . . . 6
| |
| 3 | 2 | adantr 276 |
. . . . 5
|
| 4 | 1, 3 | eqeltrrd 2285 |
. . . 4
|
| 5 | uniexb 4538 |
. . . 4
| |
| 6 | 4, 5 | sylibr 134 |
. . 3
|
| 7 | tgss3 14665 |
. . 3
| |
| 8 | 6, 7 | syldan 282 |
. 2
|
| 9 | eltg2b 14641 |
. . . . . . 7
| |
| 10 | 6, 9 | syl 14 |
. . . . . 6
|
| 11 | elunii 3869 |
. . . . . . . . 9
| |
| 12 | 11 | ancoms 268 |
. . . . . . . 8
|
| 13 | biimt 241 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
|
| 15 | 14 | ralbidva 2504 |
. . . . . 6
|
| 16 | 10, 15 | sylan9bb 462 |
. . . . 5
|
| 17 | ralcom3 2676 |
. . . . 5
| |
| 18 | 16, 17 | bitrdi 196 |
. . . 4
|
| 19 | 18 | ralbidva 2504 |
. . 3
|
| 20 | dfss3 3190 |
. . 3
| |
| 21 | ralcom 2671 |
. . 3
| |
| 22 | 19, 20, 21 | 3bitr4g 223 |
. 2
|
| 23 | 8, 22 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-topgen 13207 |
| This theorem is referenced by: metss 15081 |
| Copyright terms: Public domain | W3C validator |