| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > tgss2 | Unicode version | ||
| Description: A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| tgss2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 110 | 
. . . . 5
 | |
| 2 | uniexg 4474 | 
. . . . . 6
 | |
| 3 | 2 | adantr 276 | 
. . . . 5
 | 
| 4 | 1, 3 | eqeltrrd 2274 | 
. . . 4
 | 
| 5 | uniexb 4508 | 
. . . 4
 | |
| 6 | 4, 5 | sylibr 134 | 
. . 3
 | 
| 7 | tgss3 14314 | 
. . 3
 | |
| 8 | 6, 7 | syldan 282 | 
. 2
 | 
| 9 | eltg2b 14290 | 
. . . . . . 7
 | |
| 10 | 6, 9 | syl 14 | 
. . . . . 6
 | 
| 11 | elunii 3844 | 
. . . . . . . . 9
 | |
| 12 | 11 | ancoms 268 | 
. . . . . . . 8
 | 
| 13 | biimt 241 | 
. . . . . . . 8
 | |
| 14 | 12, 13 | syl 14 | 
. . . . . . 7
 | 
| 15 | 14 | ralbidva 2493 | 
. . . . . 6
 | 
| 16 | 10, 15 | sylan9bb 462 | 
. . . . 5
 | 
| 17 | ralcom3 2665 | 
. . . . 5
 | |
| 18 | 16, 17 | bitrdi 196 | 
. . . 4
 | 
| 19 | 18 | ralbidva 2493 | 
. . 3
 | 
| 20 | dfss3 3173 | 
. . 3
 | |
| 21 | ralcom 2660 | 
. . 3
 | |
| 22 | 19, 20, 21 | 3bitr4g 223 | 
. 2
 | 
| 23 | 8, 22 | bitrd 188 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-topgen 12931 | 
| This theorem is referenced by: metss 14730 | 
| Copyright terms: Public domain | W3C validator |