| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbiebt | Unicode version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3168.) (Contributed by NM, 11-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbiebt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | spsbc 3040 |
. . . . 5
| |
| 3 | 2 | adantr 276 |
. . . 4
|
| 4 | simpl 109 |
. . . . 5
| |
| 5 | biimt 241 |
. . . . . . 7
| |
| 6 | csbeq1a 3133 |
. . . . . . . 8
| |
| 7 | 6 | eqeq1d 2238 |
. . . . . . 7
|
| 8 | 5, 7 | bitr3d 190 |
. . . . . 6
|
| 9 | 8 | adantl 277 |
. . . . 5
|
| 10 | nfv 1574 |
. . . . . 6
| |
| 11 | nfnfc1 2375 |
. . . . . 6
| |
| 12 | 10, 11 | nfan 1611 |
. . . . 5
|
| 13 | nfcsb1v 3157 |
. . . . . . 7
| |
| 14 | 13 | a1i 9 |
. . . . . 6
|
| 15 | simpr 110 |
. . . . . 6
| |
| 16 | 14, 15 | nfeqd 2387 |
. . . . 5
|
| 17 | 4, 9, 12, 16 | sbciedf 3064 |
. . . 4
|
| 18 | 3, 17 | sylibd 149 |
. . 3
|
| 19 | 13 | a1i 9 |
. . . . . . . 8
|
| 20 | id 19 |
. . . . . . . 8
| |
| 21 | 19, 20 | nfeqd 2387 |
. . . . . . 7
|
| 22 | 11, 21 | nfan1 1610 |
. . . . . 6
|
| 23 | 7 | biimprcd 160 |
. . . . . . 7
|
| 24 | 23 | adantl 277 |
. . . . . 6
|
| 25 | 22, 24 | alrimi 1568 |
. . . . 5
|
| 26 | 25 | ex 115 |
. . . 4
|
| 27 | 26 | adantl 277 |
. . 3
|
| 28 | 18, 27 | impbid 129 |
. 2
|
| 29 | 1, 28 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 df-csb 3125 |
| This theorem is referenced by: csbiedf 3165 csbieb 3166 csbiegf 3168 |
| Copyright terms: Public domain | W3C validator |