| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbiebt | Unicode version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3128.) (Contributed by NM, 11-Nov-2005.) |
| Ref | Expression |
|---|---|
| csbiebt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | spsbc 3001 |
. . . . 5
| |
| 3 | 2 | adantr 276 |
. . . 4
|
| 4 | simpl 109 |
. . . . 5
| |
| 5 | biimt 241 |
. . . . . . 7
| |
| 6 | csbeq1a 3093 |
. . . . . . . 8
| |
| 7 | 6 | eqeq1d 2205 |
. . . . . . 7
|
| 8 | 5, 7 | bitr3d 190 |
. . . . . 6
|
| 9 | 8 | adantl 277 |
. . . . 5
|
| 10 | nfv 1542 |
. . . . . 6
| |
| 11 | nfnfc1 2342 |
. . . . . 6
| |
| 12 | 10, 11 | nfan 1579 |
. . . . 5
|
| 13 | nfcsb1v 3117 |
. . . . . . 7
| |
| 14 | 13 | a1i 9 |
. . . . . 6
|
| 15 | simpr 110 |
. . . . . 6
| |
| 16 | 14, 15 | nfeqd 2354 |
. . . . 5
|
| 17 | 4, 9, 12, 16 | sbciedf 3025 |
. . . 4
|
| 18 | 3, 17 | sylibd 149 |
. . 3
|
| 19 | 13 | a1i 9 |
. . . . . . . 8
|
| 20 | id 19 |
. . . . . . . 8
| |
| 21 | 19, 20 | nfeqd 2354 |
. . . . . . 7
|
| 22 | 11, 21 | nfan1 1578 |
. . . . . 6
|
| 23 | 7 | biimprcd 160 |
. . . . . . 7
|
| 24 | 23 | adantl 277 |
. . . . . 6
|
| 25 | 22, 24 | alrimi 1536 |
. . . . 5
|
| 26 | 25 | ex 115 |
. . . 4
|
| 27 | 26 | adantl 277 |
. . 3
|
| 28 | 18, 27 | impbid 129 |
. 2
|
| 29 | 1, 28 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 df-csb 3085 |
| This theorem is referenced by: csbiedf 3125 csbieb 3126 csbiegf 3128 |
| Copyright terms: Public domain | W3C validator |