ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiebt Unicode version

Theorem csbiebt 3039
Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3043.) (Contributed by NM, 11-Nov-2005.)
Assertion
Ref Expression
csbiebt  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem csbiebt
StepHypRef Expression
1 elex 2697 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 spsbc 2920 . . . . 5  |-  ( A  e.  _V  ->  ( A. x ( x  =  A  ->  B  =  C )  ->  [. A  /  x ]. ( x  =  A  ->  B  =  C ) ) )
32adantr 274 . . . 4  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  ->  [. A  /  x ]. ( x  =  A  ->  B  =  C ) ) )
4 simpl 108 . . . . 5  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  A  e.  _V )
5 biimt 240 . . . . . . 7  |-  ( x  =  A  ->  ( B  =  C  <->  ( x  =  A  ->  B  =  C ) ) )
6 csbeq1a 3012 . . . . . . . 8  |-  ( x  =  A  ->  B  =  [_ A  /  x ]_ B )
76eqeq1d 2148 . . . . . . 7  |-  ( x  =  A  ->  ( B  =  C  <->  [_ A  /  x ]_ B  =  C ) )
85, 7bitr3d 189 . . . . . 6  |-  ( x  =  A  ->  (
( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C
) )
98adantl 275 . . . . 5  |-  ( ( ( A  e.  _V  /\ 
F/_ x C )  /\  x  =  A )  ->  ( (
x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
10 nfv 1508 . . . . . 6  |-  F/ x  A  e.  _V
11 nfnfc1 2284 . . . . . 6  |-  F/ x F/_ x C
1210, 11nfan 1544 . . . . 5  |-  F/ x
( A  e.  _V  /\ 
F/_ x C )
13 nfcsb1v 3035 . . . . . . 7  |-  F/_ x [_ A  /  x ]_ B
1413a1i 9 . . . . . 6  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/_ x [_ A  /  x ]_ B )
15 simpr 109 . . . . . 6  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/_ x C )
1614, 15nfeqd 2296 . . . . 5  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/ x [_ A  /  x ]_ B  =  C )
174, 9, 12, 16sbciedf 2944 . . . 4  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( [. A  /  x ]. ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C
) )
183, 17sylibd 148 . . 3  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  ->  [_ A  /  x ]_ B  =  C
) )
1913a1i 9 . . . . . . . 8  |-  ( F/_ x C  ->  F/_ x [_ A  /  x ]_ B )
20 id 19 . . . . . . . 8  |-  ( F/_ x C  ->  F/_ x C )
2119, 20nfeqd 2296 . . . . . . 7  |-  ( F/_ x C  ->  F/ x [_ A  /  x ]_ B  =  C
)
2211, 21nfan1 1543 . . . . . 6  |-  F/ x
( F/_ x C  /\  [_ A  /  x ]_ B  =  C )
237biimprcd 159 . . . . . . 7  |-  ( [_ A  /  x ]_ B  =  C  ->  ( x  =  A  ->  B  =  C ) )
2423adantl 275 . . . . . 6  |-  ( (
F/_ x C  /\  [_ A  /  x ]_ B  =  C )  ->  ( x  =  A  ->  B  =  C ) )
2522, 24alrimi 1502 . . . . 5  |-  ( (
F/_ x C  /\  [_ A  /  x ]_ B  =  C )  ->  A. x ( x  =  A  ->  B  =  C ) )
2625ex 114 . . . 4  |-  ( F/_ x C  ->  ( [_ A  /  x ]_ B  =  C  ->  A. x
( x  =  A  ->  B  =  C ) ) )
2726adantl 275 . . 3  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( [_ A  /  x ]_ B  =  C  ->  A. x ( x  =  A  ->  B  =  C ) ) )
2818, 27impbid 128 . 2  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
291, 28sylan 281 1  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1329    = wceq 1331    e. wcel 1480   F/_wnfc 2268   _Vcvv 2686   [.wsbc 2909   [_csb 3003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-sbc 2910  df-csb 3004
This theorem is referenced by:  csbiedf  3040  csbieb  3041  csbiegf  3043
  Copyright terms: Public domain W3C validator