ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiebt Unicode version

Theorem csbiebt 3137
Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3141.) (Contributed by NM, 11-Nov-2005.)
Assertion
Ref Expression
csbiebt  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem csbiebt
StepHypRef Expression
1 elex 2785 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 spsbc 3014 . . . . 5  |-  ( A  e.  _V  ->  ( A. x ( x  =  A  ->  B  =  C )  ->  [. A  /  x ]. ( x  =  A  ->  B  =  C ) ) )
32adantr 276 . . . 4  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  ->  [. A  /  x ]. ( x  =  A  ->  B  =  C ) ) )
4 simpl 109 . . . . 5  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  A  e.  _V )
5 biimt 241 . . . . . . 7  |-  ( x  =  A  ->  ( B  =  C  <->  ( x  =  A  ->  B  =  C ) ) )
6 csbeq1a 3106 . . . . . . . 8  |-  ( x  =  A  ->  B  =  [_ A  /  x ]_ B )
76eqeq1d 2215 . . . . . . 7  |-  ( x  =  A  ->  ( B  =  C  <->  [_ A  /  x ]_ B  =  C ) )
85, 7bitr3d 190 . . . . . 6  |-  ( x  =  A  ->  (
( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C
) )
98adantl 277 . . . . 5  |-  ( ( ( A  e.  _V  /\ 
F/_ x C )  /\  x  =  A )  ->  ( (
x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
10 nfv 1552 . . . . . 6  |-  F/ x  A  e.  _V
11 nfnfc1 2352 . . . . . 6  |-  F/ x F/_ x C
1210, 11nfan 1589 . . . . 5  |-  F/ x
( A  e.  _V  /\ 
F/_ x C )
13 nfcsb1v 3130 . . . . . . 7  |-  F/_ x [_ A  /  x ]_ B
1413a1i 9 . . . . . 6  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/_ x [_ A  /  x ]_ B )
15 simpr 110 . . . . . 6  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/_ x C )
1614, 15nfeqd 2364 . . . . 5  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/ x [_ A  /  x ]_ B  =  C )
174, 9, 12, 16sbciedf 3038 . . . 4  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( [. A  /  x ]. ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C
) )
183, 17sylibd 149 . . 3  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  ->  [_ A  /  x ]_ B  =  C
) )
1913a1i 9 . . . . . . . 8  |-  ( F/_ x C  ->  F/_ x [_ A  /  x ]_ B )
20 id 19 . . . . . . . 8  |-  ( F/_ x C  ->  F/_ x C )
2119, 20nfeqd 2364 . . . . . . 7  |-  ( F/_ x C  ->  F/ x [_ A  /  x ]_ B  =  C
)
2211, 21nfan1 1588 . . . . . 6  |-  F/ x
( F/_ x C  /\  [_ A  /  x ]_ B  =  C )
237biimprcd 160 . . . . . . 7  |-  ( [_ A  /  x ]_ B  =  C  ->  ( x  =  A  ->  B  =  C ) )
2423adantl 277 . . . . . 6  |-  ( (
F/_ x C  /\  [_ A  /  x ]_ B  =  C )  ->  ( x  =  A  ->  B  =  C ) )
2522, 24alrimi 1546 . . . . 5  |-  ( (
F/_ x C  /\  [_ A  /  x ]_ B  =  C )  ->  A. x ( x  =  A  ->  B  =  C ) )
2625ex 115 . . . 4  |-  ( F/_ x C  ->  ( [_ A  /  x ]_ B  =  C  ->  A. x
( x  =  A  ->  B  =  C ) ) )
2726adantl 277 . . 3  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( [_ A  /  x ]_ B  =  C  ->  A. x ( x  =  A  ->  B  =  C ) ) )
2818, 27impbid 129 . 2  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
291, 28sylan 283 1  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2177   F/_wnfc 2336   _Vcvv 2773   [.wsbc 3002   [_csb 3097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3003  df-csb 3098
This theorem is referenced by:  csbiedf  3138  csbieb  3139  csbiegf  3141
  Copyright terms: Public domain W3C validator