ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu8 Unicode version

Theorem reu8 2926
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.)
Hypothesis
Ref Expression
rmo4.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
reu8  |-  ( E! x  e.  A  ph  <->  E. x  e.  A  (
ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem reu8
StepHypRef Expression
1 rmo4.1 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
21cbvreuv 2698 . 2  |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
3 reu6 2919 . 2  |-  ( E! y  e.  A  ps  <->  E. x  e.  A  A. y  e.  A  ( ps 
<->  y  =  x ) )
4 dfbi2 386 . . . . 5  |-  ( ( ps  <->  y  =  x )  <->  ( ( ps 
->  y  =  x
)  /\  ( y  =  x  ->  ps )
) )
54ralbii 2476 . . . 4  |-  ( A. y  e.  A  ( ps 
<->  y  =  x )  <->  A. y  e.  A  ( ( ps  ->  y  =  x )  /\  ( y  =  x  ->  ps ) ) )
6 r19.26 2596 . . . . 5  |-  ( A. y  e.  A  (
( ps  ->  y  =  x )  /\  (
y  =  x  ->  ps ) )  <->  ( A. y  e.  A  ( ps  ->  y  =  x )  /\  A. y  e.  A  ( y  =  x  ->  ps )
) )
7 ancom 264 . . . . . 6  |-  ( (
ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) )  <->  ( A. y  e.  A  ( ps  ->  x  =  y )  /\  ph ) )
8 equcom 1699 . . . . . . . . . 10  |-  ( x  =  y  <->  y  =  x )
98imbi2i 225 . . . . . . . . 9  |-  ( ( ps  ->  x  =  y )  <->  ( ps  ->  y  =  x ) )
109ralbii 2476 . . . . . . . 8  |-  ( A. y  e.  A  ( ps  ->  x  =  y )  <->  A. y  e.  A  ( ps  ->  y  =  x ) )
1110a1i 9 . . . . . . 7  |-  ( x  e.  A  ->  ( A. y  e.  A  ( ps  ->  x  =  y )  <->  A. y  e.  A  ( ps  ->  y  =  x ) ) )
12 biimt 240 . . . . . . . 8  |-  ( x  e.  A  ->  ( ph 
<->  ( x  e.  A  ->  ph ) ) )
13 df-ral 2453 . . . . . . . . 9  |-  ( A. y  e.  A  (
y  =  x  ->  ps )  <->  A. y ( y  e.  A  ->  (
y  =  x  ->  ps ) ) )
14 bi2.04 247 . . . . . . . . . 10  |-  ( ( y  e.  A  -> 
( y  =  x  ->  ps ) )  <-> 
( y  =  x  ->  ( y  e.  A  ->  ps )
) )
1514albii 1463 . . . . . . . . 9  |-  ( A. y ( y  e.  A  ->  ( y  =  x  ->  ps )
)  <->  A. y ( y  =  x  ->  (
y  e.  A  ->  ps ) ) )
16 vex 2733 . . . . . . . . . 10  |-  x  e. 
_V
17 eleq1 2233 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
1817, 1imbi12d 233 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  e.  A  ->  ph )  <->  ( y  e.  A  ->  ps )
) )
1918bicomd 140 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( y  e.  A  ->  ps )  <->  ( x  e.  A  ->  ph )
) )
2019equcoms 1701 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( y  e.  A  ->  ps )  <->  ( x  e.  A  ->  ph )
) )
2116, 20ceqsalv 2760 . . . . . . . . 9  |-  ( A. y ( y  =  x  ->  ( y  e.  A  ->  ps )
)  <->  ( x  e.  A  ->  ph ) )
2213, 15, 213bitrri 206 . . . . . . . 8  |-  ( ( x  e.  A  ->  ph )  <->  A. y  e.  A  ( y  =  x  ->  ps ) )
2312, 22bitrdi 195 . . . . . . 7  |-  ( x  e.  A  ->  ( ph 
<-> 
A. y  e.  A  ( y  =  x  ->  ps ) ) )
2411, 23anbi12d 470 . . . . . 6  |-  ( x  e.  A  ->  (
( A. y  e.  A  ( ps  ->  x  =  y )  /\  ph )  <->  ( A. y  e.  A  ( ps  ->  y  =  x )  /\  A. y  e.  A  ( y  =  x  ->  ps )
) ) )
257, 24syl5bb 191 . . . . 5  |-  ( x  e.  A  ->  (
( ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) )  <->  ( A. y  e.  A  ( ps  ->  y  =  x )  /\  A. y  e.  A  ( y  =  x  ->  ps )
) ) )
266, 25bitr4id 198 . . . 4  |-  ( x  e.  A  ->  ( A. y  e.  A  ( ( ps  ->  y  =  x )  /\  ( y  =  x  ->  ps ) )  <-> 
( ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) ) ) )
275, 26syl5bb 191 . . 3  |-  ( x  e.  A  ->  ( A. y  e.  A  ( ps  <->  y  =  x )  <->  ( ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) ) ) )
2827rexbiia 2485 . 2  |-  ( E. x  e.  A  A. y  e.  A  ( ps 
<->  y  =  x )  <->  E. x  e.  A  ( ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) ) )
292, 3, 283bitri 205 1  |-  ( E! x  e.  A  ph  <->  E. x  e.  A  (
ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    e. wcel 2141   A.wral 2448   E.wrex 2449   E!wreu 2450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-rex 2454  df-reu 2455  df-v 2732
This theorem is referenced by:  updjud  7059  reumodprminv  12207  grpinveu  12741
  Copyright terms: Public domain W3C validator