| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reu8 | Unicode version | ||
| Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.) |
| Ref | Expression |
|---|---|
| rmo4.1 |
|
| Ref | Expression |
|---|---|
| reu8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmo4.1 |
. . 3
| |
| 2 | 1 | cbvreuv 2744 |
. 2
|
| 3 | reu6 2969 |
. 2
| |
| 4 | dfbi2 388 |
. . . . 5
| |
| 5 | 4 | ralbii 2514 |
. . . 4
|
| 6 | r19.26 2634 |
. . . . 5
| |
| 7 | ancom 266 |
. . . . . 6
| |
| 8 | equcom 1730 |
. . . . . . . . . 10
| |
| 9 | 8 | imbi2i 226 |
. . . . . . . . 9
|
| 10 | 9 | ralbii 2514 |
. . . . . . . 8
|
| 11 | 10 | a1i 9 |
. . . . . . 7
|
| 12 | biimt 241 |
. . . . . . . 8
| |
| 13 | df-ral 2491 |
. . . . . . . . 9
| |
| 14 | bi2.04 248 |
. . . . . . . . . 10
| |
| 15 | 14 | albii 1494 |
. . . . . . . . 9
|
| 16 | vex 2779 |
. . . . . . . . . 10
| |
| 17 | eleq1 2270 |
. . . . . . . . . . . . 13
| |
| 18 | 17, 1 | imbi12d 234 |
. . . . . . . . . . . 12
|
| 19 | 18 | bicomd 141 |
. . . . . . . . . . 11
|
| 20 | 19 | equcoms 1732 |
. . . . . . . . . 10
|
| 21 | 16, 20 | ceqsalv 2807 |
. . . . . . . . 9
|
| 22 | 13, 15, 21 | 3bitrri 207 |
. . . . . . . 8
|
| 23 | 12, 22 | bitrdi 196 |
. . . . . . 7
|
| 24 | 11, 23 | anbi12d 473 |
. . . . . 6
|
| 25 | 7, 24 | bitrid 192 |
. . . . 5
|
| 26 | 6, 25 | bitr4id 199 |
. . . 4
|
| 27 | 5, 26 | bitrid 192 |
. . 3
|
| 28 | 27 | rexbiia 2523 |
. 2
|
| 29 | 2, 3, 28 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2194 df-cleq 2200 df-clel 2203 df-ral 2491 df-rex 2492 df-reu 2493 df-v 2778 |
| This theorem is referenced by: reu8nf 3087 updjud 7210 reumodprminv 12691 grpinveu 13485 |
| Copyright terms: Public domain | W3C validator |