| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > reu8 | Unicode version | ||
| Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.) | 
| Ref | Expression | 
|---|---|
| rmo4.1 | 
 | 
| Ref | Expression | 
|---|---|
| reu8 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rmo4.1 | 
. . 3
 | |
| 2 | 1 | cbvreuv 2731 | 
. 2
 | 
| 3 | reu6 2953 | 
. 2
 | |
| 4 | dfbi2 388 | 
. . . . 5
 | |
| 5 | 4 | ralbii 2503 | 
. . . 4
 | 
| 6 | r19.26 2623 | 
. . . . 5
 | |
| 7 | ancom 266 | 
. . . . . 6
 | |
| 8 | equcom 1720 | 
. . . . . . . . . 10
 | |
| 9 | 8 | imbi2i 226 | 
. . . . . . . . 9
 | 
| 10 | 9 | ralbii 2503 | 
. . . . . . . 8
 | 
| 11 | 10 | a1i 9 | 
. . . . . . 7
 | 
| 12 | biimt 241 | 
. . . . . . . 8
 | |
| 13 | df-ral 2480 | 
. . . . . . . . 9
 | |
| 14 | bi2.04 248 | 
. . . . . . . . . 10
 | |
| 15 | 14 | albii 1484 | 
. . . . . . . . 9
 | 
| 16 | vex 2766 | 
. . . . . . . . . 10
 | |
| 17 | eleq1 2259 | 
. . . . . . . . . . . . 13
 | |
| 18 | 17, 1 | imbi12d 234 | 
. . . . . . . . . . . 12
 | 
| 19 | 18 | bicomd 141 | 
. . . . . . . . . . 11
 | 
| 20 | 19 | equcoms 1722 | 
. . . . . . . . . 10
 | 
| 21 | 16, 20 | ceqsalv 2793 | 
. . . . . . . . 9
 | 
| 22 | 13, 15, 21 | 3bitrri 207 | 
. . . . . . . 8
 | 
| 23 | 12, 22 | bitrdi 196 | 
. . . . . . 7
 | 
| 24 | 11, 23 | anbi12d 473 | 
. . . . . 6
 | 
| 25 | 7, 24 | bitrid 192 | 
. . . . 5
 | 
| 26 | 6, 25 | bitr4id 199 | 
. . . 4
 | 
| 27 | 5, 26 | bitrid 192 | 
. . 3
 | 
| 28 | 27 | rexbiia 2512 | 
. 2
 | 
| 29 | 2, 3, 28 | 3bitri 206 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 | 
| This theorem is referenced by: updjud 7148 reumodprminv 12422 grpinveu 13170 | 
| Copyright terms: Public domain | W3C validator |