Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axempty Unicode version

Theorem bj-axempty 16214
Description: Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a nonempty universe. See axnul 4208. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4209 instead. (New usage is discouraged.)
Assertion
Ref Expression
bj-axempty  |-  E. x A. y  e.  x F.
Distinct variable group:    x, y

Proof of Theorem bj-axempty
StepHypRef Expression
1 bj-axemptylem 16213 . 2  |-  E. x A. y ( y  e.  x  -> F.  )
2 df-ral 2513 . . 3  |-  ( A. y  e.  x F.  <->  A. y ( y  e.  x  -> F.  )
)
32exbii 1651 . 2  |-  ( E. x A. y  e.  x F.  <->  E. x A. y ( y  e.  x  -> F.  )
)
41, 3mpbir 146 1  |-  E. x A. y  e.  x F.
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1393   F. wfal 1400   E.wex 1538   A.wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580  ax-bd0 16134  ax-bdim 16135  ax-bdn 16138  ax-bdeq 16141  ax-bdsep 16205
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-ral 2513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator