| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-axempty | GIF version | ||
| Description: Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a nonempty universe. See axnul 4188. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4189 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-axempty | ⊢ ∃𝑥∀𝑦 ∈ 𝑥 ⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-axemptylem 16165 | . 2 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) | |
| 2 | df-ral 2493 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 ⊥ ↔ ∀𝑦(𝑦 ∈ 𝑥 → ⊥)) | |
| 3 | 2 | exbii 1631 | . 2 ⊢ (∃𝑥∀𝑦 ∈ 𝑥 ⊥ ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ ∃𝑥∀𝑦 ∈ 𝑥 ⊥ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1373 ⊥wfal 1380 ∃wex 1518 ∀wral 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-ial 1560 ax-bd0 16086 ax-bdim 16087 ax-bdn 16090 ax-bdeq 16093 ax-bdsep 16157 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-fal 1381 df-ral 2493 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |