Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axempty GIF version

Theorem bj-axempty 13928
Description: Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a nonempty universe. See axnul 4114. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4115 instead. (New usage is discouraged.)
Assertion
Ref Expression
bj-axempty 𝑥𝑦𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-axempty
StepHypRef Expression
1 bj-axemptylem 13927 . 2 𝑥𝑦(𝑦𝑥 → ⊥)
2 df-ral 2453 . . 3 (∀𝑦𝑥 ⊥ ↔ ∀𝑦(𝑦𝑥 → ⊥))
32exbii 1598 . 2 (∃𝑥𝑦𝑥 ⊥ ↔ ∃𝑥𝑦(𝑦𝑥 → ⊥))
41, 3mpbir 145 1 𝑥𝑦𝑥
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wfal 1353  wex 1485  wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527  ax-bd0 13848  ax-bdim 13849  ax-bdn 13852  ax-bdeq 13855  ax-bdsep 13919
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-ral 2453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator