![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-axempty | GIF version |
Description: Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a nonempty universe. See axnul 3985. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 3986 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-axempty | ⊢ ∃𝑥∀𝑦 ∈ 𝑥 ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-axemptylem 12491 | . 2 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) | |
2 | df-ral 2375 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 ⊥ ↔ ∀𝑦(𝑦 ∈ 𝑥 → ⊥)) | |
3 | 2 | exbii 1548 | . 2 ⊢ (∃𝑥∀𝑦 ∈ 𝑥 ⊥ ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
4 | 1, 3 | mpbir 145 | 1 ⊢ ∃𝑥∀𝑦 ∈ 𝑥 ⊥ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1294 ⊥wfal 1301 ∃wex 1433 ∀wral 2370 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-5 1388 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-4 1452 ax-ial 1479 ax-bd0 12412 ax-bdim 12413 ax-bdn 12416 ax-bdeq 12419 ax-bdsep 12483 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-fal 1302 df-ral 2375 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |