| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-axempty | GIF version | ||
| Description: Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a nonempty universe. See axnul 4158. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4159 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-axempty | ⊢ ∃𝑥∀𝑦 ∈ 𝑥 ⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-axemptylem 15538 | . 2 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) | |
| 2 | df-ral 2480 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 ⊥ ↔ ∀𝑦(𝑦 ∈ 𝑥 → ⊥)) | |
| 3 | 2 | exbii 1619 | . 2 ⊢ (∃𝑥∀𝑦 ∈ 𝑥 ⊥ ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ ∃𝑥∀𝑦 ∈ 𝑥 ⊥ |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ⊥wfal 1369 ∃wex 1506 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 ax-bd0 15459 ax-bdim 15460 ax-bdn 15463 ax-bdeq 15466 ax-bdsep 15530 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-ral 2480 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |