Theorem List for Intuitionistic Logic Explorer - 15001-15100 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | isms2 15001 |
Express the predicate "   is a metric space" with
underlying set
and distance function . (Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
                             |
| |
| Theorem | xmstopn 15002 |
The topology component of an extended metric space coincides with the
topology generated by the metric component. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
                        |
| |
| Theorem | mstopn 15003 |
The topology component of a metric space coincides with the topology
generated by the metric component. (Contributed by Mario Carneiro,
26-Aug-2015.)
|
                       |
| |
| Theorem | xmstps 15004 |
An extended metric space is a topological space. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
    |
| |
| Theorem | msxms 15005 |
A metric space is an extended metric space. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|

   |
| |
| Theorem | mstps 15006 |
A metric space is a topological space. (Contributed by Mario Carneiro,
26-Aug-2015.)
|

  |
| |
| Theorem | xmsxmet 15007 |
The distance function, suitably truncated, is an extended metric on
. (Contributed
by Mario Carneiro, 2-Sep-2015.)
|
                     |
| |
| Theorem | msmet 15008 |
The distance function, suitably truncated, is a metric on .
(Contributed by Mario Carneiro, 12-Nov-2013.)
|
            
      |
| |
| Theorem | msf 15009 |
The distance function of a metric space is a function into the real
numbers. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
                     |
| |
| Theorem | xmsxmet2 15010 |
The distance function, suitably truncated, is an extended metric on
. (Contributed
by Mario Carneiro, 2-Oct-2015.)
|
                     |
| |
| Theorem | msmet2 15011 |
The distance function, suitably truncated, is a metric on .
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
                   |
| |
| Theorem | mscl 15012 |
Closure of the distance function of a metric space. (Contributed by NM,
30-Aug-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
|
         
    
  |
| |
| Theorem | xmscl 15013 |
Closure of the distance function of an extended metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
           
      |
| |
| Theorem | xmsge0 15014 |
The distance function in an extended metric space is nonnegative.
(Contributed by Mario Carneiro, 4-Oct-2015.)
|
           
      |
| |
| Theorem | xmseq0 15015 |
The distance between two points in an extended metric space is zero iff
the two points are identical. (Contributed by Mario Carneiro,
2-Oct-2015.)
|
           
    
   |
| |
| Theorem | xmssym 15016 |
The distance function in an extended metric space is symmetric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
           
          |
| |
| Theorem | xmstri2 15017 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
           
 
                   |
| |
| Theorem | mstri2 15018 |
Triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
         
  
        
       |
| |
| Theorem | xmstri 15019 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 2-Oct-2015.)
|
           
 
                   |
| |
| Theorem | mstri 15020 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 2-Oct-2015.)
|
         
  
        
       |
| |
| Theorem | xmstri3 15021 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
           
 
                   |
| |
| Theorem | mstri3 15022 |
Triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
         
  
        
       |
| |
| Theorem | msrtri 15023 |
Reverse triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 4-Oct-2015.)
|
         
  
       
     
      |
| |
| Theorem | xmspropd 15024 |
Property deduction for an extended metric space. (Contributed by Mario
Carneiro, 4-Oct-2015.)
|
                    
             
            |
| |
| Theorem | mspropd 15025 |
Property deduction for a metric space. (Contributed by Mario Carneiro,
4-Oct-2015.)
|
                    
             
      
   |
| |
| Theorem | setsmsbasg 15026 |
The base set of a constructed metric space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
                

sSet  TopSet  
       
              |
| |
| Theorem | setsmsdsg 15027 |
The distance function of a constructed metric space. (Contributed by
Mario Carneiro, 28-Aug-2015.)
|
                

sSet  TopSet  
       
                  |
| |
| Theorem | setsmstsetg 15028 |
The topology of a constructed metric space. (Contributed by Mario
Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.)
|
                

sSet  TopSet  
       
            TopSet    |
| |
| Theorem | mopni 15029* |
An open set of a metric space includes a ball around each of its points.
(Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
                  
   |
| |
| Theorem | mopni2 15030* |
An open set of a metric space includes a ball around each of its points.
(Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
                       |
| |
| Theorem | mopni3 15031* |
An open set of a metric space includes an arbitrarily small ball around
each of its points. (Contributed by NM, 20-Sep-2007.) (Revised by
Mario Carneiro, 12-Nov-2013.)
|
            

         
   |
| |
| Theorem | blssopn 15032 |
The balls of a metric space are open sets. (Contributed by NM,
12-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
|
                |
| |
| Theorem | unimopn 15033 |
The union of a collection of open sets of a metric space is open.
Theorem T2 of [Kreyszig] p. 19.
(Contributed by NM, 4-Sep-2006.)
(Revised by Mario Carneiro, 23-Dec-2013.)
|
               |
| |
| Theorem | mopnin 15034 |
The intersection of two open sets of a metric space is open.
(Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro,
23-Dec-2013.)
|
             
  |
| |
| Theorem | mopn0 15035 |
The empty set is an open set of a metric space. Part of Theorem T1 of
[Kreyszig] p. 19. (Contributed by NM,
4-Sep-2006.)
|
         
  |
| |
| Theorem | rnblopn 15036 |
A ball of a metric space is an open set. (Contributed by NM,
12-Sep-2006.)
|
               
  |
| |
| Theorem | blopn 15037 |
A ball of a metric space is an open set. (Contributed by NM,
9-Mar-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
                      |
| |
| Theorem | neibl 15038* |
The neighborhoods around a point of a metric space are those
subsets containing a ball around . Definition of neighborhood in
[Kreyszig] p. 19. (Contributed by NM,
8-Nov-2007.) (Revised by Mario
Carneiro, 23-Dec-2013.)
|
                                     |
| |
| Theorem | blnei 15039 |
A ball around a point is a neighborhood of the point. (Contributed by
NM, 8-Nov-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
                                |
| |
| Theorem | blsscls2 15040* |
A smaller closed ball is contained in a larger open ball. (Contributed
by Mario Carneiro, 10-Jan-2014.)
|
                   
            |
| |
| Theorem | metss 15041* |
Two ways of saying that metric generates a finer topology than
metric .
(Contributed by Mario Carneiro, 12-Nov-2013.) (Revised
by Mario Carneiro, 24-Aug-2015.)
|
                    
           
           |
| |
| Theorem | metequiv 15042* |
Two ways of saying that two metrics generate the same topology. Two
metrics satisfying the right-hand side are said to be (topologically)
equivalent. (Contributed by Jeff Hankins, 21-Jun-2009.) (Revised by
Mario Carneiro, 12-Nov-2013.)
|
                    
                              
            |
| |
| Theorem | metequiv2 15043* |
If there is a sequence of radii approaching zero for which the balls of
both metrics coincide, then the generated topologies are equivalent.
(Contributed by Mario Carneiro, 26-Aug-2015.)
|
                    
 
                       |
| |
| Theorem | metss2lem 15044* |
Lemma for metss2 15045. (Contributed by Mario Carneiro,
14-Sep-2015.)
|
              
         
 
    
        
                      |
| |
| Theorem | metss2 15045* |
If the metric is
"strongly finer" than (meaning that there
is a positive real constant such that
   
    ), then generates a finer
topology. (Using this theorem twice in each direction states that if
two metrics are strongly equivalent, then they generate the same
topology.) (Contributed by Mario Carneiro, 14-Sep-2015.)
|
              
         
 
    
         |
| |
| Theorem | comet 15046* |
The composition of an extended metric with a monotonic subadditive
function is an extended metric. (Contributed by Mario Carneiro,
21-Mar-2015.)
|
                          
    
        
           
   
             
              
         |
| |
| Theorem | bdmetval 15047* |
Value of the standard bounded metric. (Contributed by Mario Carneiro,
26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
|
  inf                     
 
    inf        
   |
| |
| Theorem | bdxmet 15048* |
The standard bounded metric is an extended metric given an extended
metric and a positive extended real cutoff. (Contributed by Mario
Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
|
  inf                 

       |
| |
| Theorem | bdmet 15049* |
The standard bounded metric is a proper metric given an extended metric
and a positive real cutoff. (Contributed by Mario Carneiro,
26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
|
  inf                         |
| |
| Theorem | bdbl 15050* |
The standard bounded metric corresponding to generates the same
balls as for
radii less than .
(Contributed by Mario
Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
|
  inf                  
 
                    |
| |
| Theorem | bdmopn 15051* |
The standard bounded metric corresponding to generates the same
topology as .
(Contributed by Mario Carneiro, 26-Aug-2015.)
(Revised by Jim Kingdon, 19-May-2023.)
|
  inf                             |
| |
| Theorem | mopnex 15052* |
The topology generated by an extended metric can also be generated by a
true metric. Thus, "metrizable topologies" can equivalently
be defined
in terms of metrics or extended metrics. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
                      |
| |
| Theorem | metrest 15053 |
Two alternate formulations of a subspace topology of a metric space
topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened
by Mario Carneiro, 5-Jan-2014.)
|
                  
 
↾t    |
| |
| Theorem | xmetxp 15054* |
The maximum metric (Chebyshev distance) on the product of two sets.
(Contributed by Jim Kingdon, 11-Oct-2023.)
|
                                    
                         |
| |
| Theorem | xmetxpbl 15055* |
The maximum metric (Chebyshev distance) on the product of two sets,
expressed in terms of balls centered on a point with radius
.
(Contributed by Jim Kingdon, 22-Oct-2023.)
|
                                    
                                                          |
| |
| Theorem | xmettxlem 15056* |
Lemma for xmettx 15057. (Contributed by Jim Kingdon, 15-Oct-2023.)
|
                                    
                                |
| |
| Theorem | xmettx 15057* |
The maximum metric (Chebyshev distance) on the product of two sets,
expressed as a binary topological product. (Contributed by Jim
Kingdon, 11-Oct-2023.)
|
                                    
                            
   |
| |
| 9.2.5 Continuity in metric spaces
|
| |
| Theorem | metcnp3 15058* |
Two ways to express that is continuous at for metric spaces.
Proposition 14-4.2 of [Gleason] p. 240.
(Contributed by NM,
17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
|
                                                               |
| |
| Theorem | metcnp 15059* |
Two ways to say a mapping from metric to metric is
continuous at point . (Contributed by NM, 11-May-2007.) (Revised
by Mario Carneiro, 28-Aug-2015.)
|
                                                          |
| |
| Theorem | metcnp2 15060* |
Two ways to say a mapping from metric to metric is
continuous at point . The distance arguments are swapped compared
to metcnp 15059 (and Munkres' metcn 15061) for compatibility with df-lm 14737.
Definition 1.3-3 of [Kreyszig] p. 20.
(Contributed by NM, 4-Jun-2007.)
(Revised by Mario Carneiro, 13-Nov-2013.)
|
                                                          |
| |
| Theorem | metcn 15061* |
Two ways to say a mapping from metric to metric is
continuous. Theorem 10.1 of [Munkres]
p. 127. The second biconditional
argument says that for every positive "epsilon" there is a
positive "delta" such that a distance less than delta in
maps to a distance less than epsilon in . (Contributed by NM,
15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
|
                    
  
                               |
| |
| Theorem | metcnpi 15062* |
Epsilon-delta property of a continuous metric space function, with
function arguments as in metcnp 15059. (Contributed by NM, 17-Dec-2007.)
(Revised by Mario Carneiro, 13-Nov-2013.)
|
               
              
      
               |
| |
| Theorem | metcnpi2 15063* |
Epsilon-delta property of a continuous metric space function, with
swapped distance function arguments as in metcnp2 15060. (Contributed by
NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
               
              
                      |
| |
| Theorem | metcnpi3 15064* |
Epsilon-delta property of a metric space function continuous at .
A variation of metcnpi2 15063 with non-strict ordering. (Contributed by
NM,
16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
               
              
                  
   |
| |
| Theorem | txmetcnp 15065* |
Continuity of a binary operation on metric spaces. (Contributed by
Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
|
                                 
   
                        
                      |
| |
| Theorem | txmetcn 15066* |
Continuity of a binary operation on metric spaces. (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
                       
                       
                            |
| |
| Theorem | metcnpd 15067* |
Two ways to say a mapping from metric to metric is
continuous at point . (Contributed by Jim Kingdon,
14-Jun-2023.)
|
                             
     
            
                 |
| |
| 9.2.6 Topology on the reals
|
| |
| Theorem | qtopbasss 15068* |
The set of open intervals with endpoints in a subset forms a basis for a
topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by
Jim Kingdon, 22-May-2023.)
|
              inf  
           |
| |
| Theorem | qtopbas 15069 |
The set of open intervals with rational endpoints forms a basis for a
topology. (Contributed by NM, 8-Mar-2007.)
|
       |
| |
| Theorem | retopbas 15070 |
A basis for the standard topology on the reals. (Contributed by NM,
6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.)
|
 |
| |
| Theorem | retop 15071 |
The standard topology on the reals. (Contributed by FL, 4-Jun-2007.)
|
     |
| |
| Theorem | uniretop 15072 |
The underlying set of the standard topology on the reals is the reals.
(Contributed by FL, 4-Jun-2007.)
|
   
  |
| |
| Theorem | retopon 15073 |
The standard topology on the reals is a topology on the reals.
(Contributed by Mario Carneiro, 28-Aug-2015.)
|
    TopOn   |
| |
| Theorem | retps 15074 |
The standard topological space on the reals. (Contributed by NM,
19-Oct-2012.)
|
          TopSet  
       |
| |
| Theorem | iooretopg 15075 |
Open intervals are open sets of the standard topology on the reals .
(Contributed by FL, 18-Jun-2007.) (Revised by Jim Kingdon,
23-May-2023.)
|
      
      |
| |
| Theorem | cnmetdval 15076 |
Value of the distance function of the metric space of complex numbers.
(Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro,
27-Dec-2014.)
|

               |
| |
| Theorem | cnmet 15077 |
The absolute value metric determines a metric space on the complex
numbers. This theorem provides a link between complex numbers and
metrics spaces, making metric space theorems available for use with
complex numbers. (Contributed by FL, 9-Oct-2006.)
|

     |
| |
| Theorem | cnxmet 15078 |
The absolute value metric is an extended metric. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|

      |
| |
| Theorem | cntoptopon 15079 |
The topology of the complex numbers is a topology. (Contributed by Jim
Kingdon, 6-Jun-2023.)
|
     TopOn   |
| |
| Theorem | cntoptop 15080 |
The topology of the complex numbers is a topology. (Contributed by Jim
Kingdon, 6-Jun-2023.)
|
      |
| |
| Theorem | cnbl0 15081 |
Two ways to write the open ball centered at zero. (Contributed by Mario
Carneiro, 8-Sep-2015.)
|

                    |
| |
| Theorem | cnblcld 15082* |
Two ways to write the closed ball centered at zero. (Contributed by
Mario Carneiro, 8-Sep-2015.)
|

       ![[,] [,]](_icc.gif)           |
| |
| Theorem | cnfldms 15083 |
The complex number field is a metric space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
ℂfld  |
| |
| Theorem | cnfldxms 15084 |
The complex number field is a topological space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
ℂfld   |
| |
| Theorem | cnfldtps 15085 |
The complex number field is a topological space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
ℂfld  |
| |
| Theorem | cnfldtopn 15086 |
The topology of the complex numbers. (Contributed by Mario Carneiro,
28-Aug-2015.)
|
  ℂfld       |
| |
| Theorem | cnfldtopon 15087 |
The topology of the complex numbers is a topology. (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
  ℂfld TopOn   |
| |
| Theorem | cnfldtop 15088 |
The topology of the complex numbers is a topology. (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
  ℂfld  |
| |
| Theorem | unicntopcntop 15089 |
The underlying set of the standard topology on the complex numbers is the
set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(Revised by Jim Kingdon, 12-Dec-2023.)
|
       |
| |
| Theorem | unicntop 15090 |
The underlying set of the standard topology on the complex numbers is the
set of complex numbers. (Contributed by Glauco Siliprandi,
11-Dec-2019.)
|
   ℂfld |
| |
| Theorem | cnopncntop 15091 |
The set of complex numbers is open with respect to the standard topology
on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(Revised by Jim Kingdon, 12-Dec-2023.)
|
      |
| |
| Theorem | cnopn 15092 |
The set of complex numbers is open with respect to the standard topology
on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
|
  ℂfld |
| |
| Theorem | reopnap 15093* |
The real numbers apart from a given real number form an open set.
(Contributed by Jim Kingdon, 13-Dec-2023.)
|
  #
       |
| |
| Theorem | remetdval 15094 |
Value of the distance function of the metric space of real numbers.
(Contributed by NM, 16-May-2007.)
|
           
        |
| |
| Theorem | remet 15095 |
The absolute value metric determines a metric space on the reals.
(Contributed by NM, 10-Feb-2007.)
|
          |
| |
| Theorem | rexmet 15096 |
The absolute value metric is an extended metric. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
           |
| |
| Theorem | bl2ioo 15097 |
A ball in terms of an open interval of reals. (Contributed by NM,
18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
                          |
| |
| Theorem | ioo2bl 15098 |
An open interval of reals in terms of a ball. (Contributed by NM,
18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
|
                              |
| |
| Theorem | ioo2blex 15099 |
An open interval of reals in terms of a ball. (Contributed by Mario
Carneiro, 14-Nov-2013.)
|
                  |
| |
| Theorem | blssioo 15100 |
The balls of the standard real metric space are included in the open
real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario
Carneiro, 13-Nov-2013.)
|
        
 |