HomeHome Intuitionistic Logic Explorer
Theorem List (p. 151 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15001-15100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremisms2 15001 Express the predicate "
<. X ,  D >. is a metric space" with underlying set  X and distance function  D. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
 |-  J  =  ( TopOpen `  K )   &    |-  X  =  (
 Base `  K )   &    |-  D  =  ( ( dist `  K )  |`  ( X  X.  X ) )   =>    |-  ( K  e.  MetSp  <->  ( D  e.  ( Met `  X )  /\  J  =  ( MetOpen `  D )
 ) )
 
Theoremxmstopn 15002 The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  J  =  ( TopOpen `  K )   &    |-  X  =  (
 Base `  K )   &    |-  D  =  ( ( dist `  K )  |`  ( X  X.  X ) )   =>    |-  ( K  e.  *MetSp  ->  J  =  (
 MetOpen `  D ) )
 
Theoremmstopn 15003 The topology component of a metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  J  =  ( TopOpen `  K )   &    |-  X  =  (
 Base `  K )   &    |-  D  =  ( ( dist `  K )  |`  ( X  X.  X ) )   =>    |-  ( K  e.  MetSp  ->  J  =  ( MetOpen `  D ) )
 
Theoremxmstps 15004 An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  ( M  e.  *MetSp  ->  M  e.  TopSp )
 
Theoremmsxms 15005 A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  ( M  e.  MetSp  ->  M  e.  *MetSp )
 
Theoremmstps 15006 A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  ( M  e.  MetSp  ->  M  e.  TopSp )
 
Theoremxmsxmet 15007 The distance function, suitably truncated, is an extended metric on  X. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  ( ( dist `  M )  |`  ( X  X.  X ) )   =>    |-  ( M  e.  *MetSp  ->  D  e.  ( *Met `  X )
 )
 
Theoremmsmet 15008 The distance function, suitably truncated, is a metric on  X. (Contributed by Mario Carneiro, 12-Nov-2013.)
 |-  X  =  ( Base `  M )   &    |-  D  =  ( ( dist `  M )  |`  ( X  X.  X ) )   =>    |-  ( M  e.  MetSp  ->  D  e.  ( Met `  X ) )
 
Theoremmsf 15009 The distance function of a metric space is a function into the real numbers. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  X  =  ( Base `  M )   &    |-  D  =  ( ( dist `  M )  |`  ( X  X.  X ) )   =>    |-  ( M  e.  MetSp  ->  D : ( X  X.  X ) --> RR )
 
Theoremxmsxmet2 15010 The distance function, suitably truncated, is an extended metric on  X. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( M  e.  *MetSp  ->  ( D  |`  ( X  X.  X ) )  e.  ( *Met `  X ) )
 
Theoremmsmet2 15011 The distance function, suitably truncated, is a metric on  X. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( M  e.  MetSp  ->  ( D  |`  ( X  X.  X ) )  e.  ( Met `  X ) )
 
Theoremmscl 15012 Closure of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  MetSp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR )
 
Theoremxmscl 15013 Closure of the distance function of an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  *MetSp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR* )
 
Theoremxmsge0 15014 The distance function in an extended metric space is nonnegative. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  *MetSp  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( A D B ) )
 
Theoremxmseq0 15015 The distance between two points in an extended metric space is zero iff the two points are identical. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  *MetSp  /\  A  e.  X  /\  B  e.  X )  ->  ( ( A D B )  =  0  <->  A  =  B ) )
 
Theoremxmssym 15016 The distance function in an extended metric space is symmetric. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  *MetSp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( B D A ) )
 
Theoremxmstri2 15017 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  *MetSp  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
 )  ->  ( A D B )  <_  (
 ( C D A ) +e ( C D B ) ) )
 
Theoremmstri2 15018 Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  MetSp  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  ->  ( A D B )  <_  ( ( C D A )  +  ( C D B ) ) )
 
Theoremxmstri 15019 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  *MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( A D B )  <_  (
 ( A D C ) +e ( C D B ) ) )
 
Theoremmstri 15020 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  ( A D B )  <_  ( ( A D C )  +  ( C D B ) ) )
 
Theoremxmstri3 15021 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  *MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( A D B )  <_  (
 ( A D C ) +e ( B D C ) ) )
 
Theoremmstri3 15022 Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  ( A D B )  <_  ( ( A D C )  +  ( B D C ) ) )
 
Theoremmsrtri 15023 Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  ( abs `  ( ( A D C )  -  ( B D C ) ) )  <_  ( A D B ) )
 
Theoremxmspropd 15024 Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  (
 ( dist `  K )  |`  ( B  X.  B ) )  =  (
 ( dist `  L )  |`  ( B  X.  B ) ) )   &    |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L ) )   =>    |-  ( ph  ->  ( K  e.  *MetSp  <->  L  e.  *MetSp ) )
 
Theoremmspropd 15025 Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  (
 ( dist `  K )  |`  ( B  X.  B ) )  =  (
 ( dist `  L )  |`  ( B  X.  B ) ) )   &    |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L ) )   =>    |-  ( ph  ->  ( K  e.  MetSp  <->  L  e.  MetSp ) )
 
Theoremsetsmsbasg 15026 The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  ( ph  ->  X  =  ( Base `  M )
 )   &    |-  ( ph  ->  D  =  ( ( dist `  M )  |`  ( X  X.  X ) ) )   &    |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  (
 MetOpen `  D )  e.  W )   =>    |-  ( ph  ->  X  =  ( Base `  K )
 )
 
Theoremsetsmsdsg 15027 The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  ( ph  ->  X  =  ( Base `  M )
 )   &    |-  ( ph  ->  D  =  ( ( dist `  M )  |`  ( X  X.  X ) ) )   &    |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  (
 MetOpen `  D )  e.  W )   =>    |-  ( ph  ->  ( dist `  M )  =  ( dist `  K )
 )
 
Theoremsetsmstsetg 15028 The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.)
 |-  ( ph  ->  X  =  ( Base `  M )
 )   &    |-  ( ph  ->  D  =  ( ( dist `  M )  |`  ( X  X.  X ) ) )   &    |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  (
 MetOpen `  D )  e.  W )   =>    |-  ( ph  ->  ( MetOpen `  D )  =  (TopSet `  K ) )
 
Theoremmopni 15029* An open set of a metric space includes a ball around each of its points. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A ) 
 ->  E. x  e.  ran  ( ball `  D )
 ( P  e.  x  /\  x  C_  A ) )
 
Theoremmopni2 15030* An open set of a metric space includes a ball around each of its points. (Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A ) 
 ->  E. x  e.  RR+  ( P ( ball `  D ) x )  C_  A )
 
Theoremmopni3 15031* An open set of a metric space includes an arbitrarily small ball around each of its points. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A )  /\  R  e.  RR+ )  ->  E. x  e.  RR+  ( x  <  R  /\  ( P (
 ball `  D ) x )  C_  A )
 )
 
Theoremblssopn 15032 The balls of a metric space are open sets. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  ->  ran  ( ball `  D )  C_  J )
 
Theoremunimopn 15033 The union of a collection of open sets of a metric space is open. Theorem T2 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  A  C_  J )  ->  U. A  e.  J )
 
Theoremmopnin 15034 The intersection of two open sets of a metric space is open. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  B  e.  J ) 
 ->  ( A  i^i  B )  e.  J )
 
Theoremmopn0 15035 The empty set is an open set of a metric space. Part of Theorem T1 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  -> 
 (/)  e.  J )
 
Theoremrnblopn 15036 A ball of a metric space is an open set. (Contributed by NM, 12-Sep-2006.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  ran  ( ball `  D )
 )  ->  B  e.  J )
 
Theoremblopn 15037 A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  e.  J )
 
Theoremneibl 15038* The neighborhoods around a point  P of a metric space are those subsets containing a ball around  P. Definition of neighborhood in [Kreyszig] p. 19. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  ->  ( N  e.  ( ( nei `  J ) `  { P }
 ) 
 <->  ( N  C_  X  /\  E. r  e.  RR+  ( P ( ball `  D ) r )  C_  N ) ) )
 
Theoremblnei 15039 A ball around a point is a neighborhood of the point. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( P ( ball `  D ) R )  e.  ( ( nei `  J ) `  { P } ) )
 
Theoremblsscls2 15040* A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.)
 |-  J  =  ( MetOpen `  D )   &    |-  S  =  {
 z  e.  X  |  ( P D z ) 
 <_  R }   =>    |-  ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  <  T ) )  ->  S  C_  ( P ( ball `  D ) T ) )
 
Theoremmetss 15041* Two ways of saying that metric  D generates a finer topology than metric  C. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  ->  ( J 
 C_  K  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x (
 ball `  D ) s )  C_  ( x ( ball `  C )
 r ) ) )
 
Theoremmetequiv 15042* Two ways of saying that two metrics generate the same topology. Two metrics satisfying the right-hand side are said to be (topologically) equivalent. (Contributed by Jeff Hankins, 21-Jun-2009.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  ->  ( J  =  K  <->  A. x  e.  X  ( A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D )
 s )  C_  ( x ( ball `  C ) r )  /\  A. a  e.  RR+  E. b  e.  RR+  ( x (
 ball `  C ) b )  C_  ( x ( ball `  D )
 a ) ) ) )
 
Theoremmetequiv2 15043* If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  ->  ( A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_  r  /\  ( x ( ball `  C ) s )  =  ( x (
 ball `  D ) s ) )  ->  J  =  K ) )
 
Theoremmetss2lem 15044* Lemma for metss2 15045. (Contributed by Mario Carneiro, 14-Sep-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   &    |-  ( ph  ->  C  e.  ( Met `  X ) )   &    |-  ( ph  ->  D  e.  ( Met `  X )
 )   &    |-  ( ph  ->  R  e.  RR+ )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  ( x C y )  <_  ( R  x.  ( x D y ) ) )   =>    |-  ( ( ph  /\  ( x  e.  X  /\  S  e.  RR+ ) ) 
 ->  ( x ( ball `  D ) ( S 
 /  R ) ) 
 C_  ( x (
 ball `  C ) S ) )
 
Theoremmetss2 15045* If the metric  D is "strongly finer" than  C (meaning that there is a positive real constant 
R such that  C ( x ,  y )  <_  R  x.  D (
x ,  y )), then  D generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   &    |-  ( ph  ->  C  e.  ( Met `  X ) )   &    |-  ( ph  ->  D  e.  ( Met `  X )
 )   &    |-  ( ph  ->  R  e.  RR+ )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  ( x C y )  <_  ( R  x.  ( x D y ) ) )   =>    |-  ( ph  ->  J  C_  K )
 
Theoremcomet 15046* The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( ph  ->  D  e.  ( *Met `  X ) )   &    |-  ( ph  ->  F : ( 0 [,] +oo ) --> RR* )   &    |-  ( ( ph  /\  x  e.  ( 0 [,] +oo ) )  ->  ( ( F `  x )  =  0  <->  x  =  0 ) )   &    |-  ( ( ph  /\  ( x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo ) ) )  ->  ( x  <_  y  ->  ( F `  x ) 
 <_  ( F `  y
 ) ) )   &    |-  (
 ( ph  /\  ( x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo ) ) )  ->  ( F `  ( x +e y ) )  <_  ( ( F `  x ) +e ( F `  y ) ) )   =>    |-  ( ph  ->  ( F  o.  D )  e.  ( *Met `  X )
 )
 
Theorembdmetval 15047* Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( ( C : ( X  X.  X ) --> RR*  /\  R  e.  RR* )  /\  ( A  e.  X  /\  B  e.  X )
 )  ->  ( A D B )  = inf ( { ( A C B ) ,  R } ,  RR* ,  <  ) )
 
Theorembdxmet 15048* The standard bounded metric is an extended metric given an extended metric and a positive extended real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X ) )
 
Theorembdmet 15049* The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
 
Theorembdbl 15050* The standard bounded metric corresponding to  C generates the same balls as  C for radii less than  R. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D ) S )  =  ( P ( ball `  C ) S ) )
 
Theorembdmopn 15051* The standard bounded metric corresponding to  C generates the same topology as  C. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   &    |-  J  =  ( MetOpen `  C )   =>    |-  (
 ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  J  =  ( MetOpen `  D )
 )
 
Theoremmopnex 15052* The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  ->  E. d  e.  ( Met `  X ) J  =  ( MetOpen `  d
 ) )
 
Theoremmetrest 15053 Two alternate formulations of a subspace topology of a metric space topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened by Mario Carneiro, 5-Jan-2014.)
 |-  D  =  ( C  |`  ( Y  X.  Y ) )   &    |-  J  =  (
 MetOpen `  C )   &    |-  K  =  ( MetOpen `  D )   =>    |-  (
 ( C  e.  ( *Met `  X )  /\  Y  C_  X )  ->  ( Jt  Y )  =  K )
 
Theoremxmetxp 15054* The maximum metric (Chebyshev distance) on the product of two sets. (Contributed by Jim Kingdon, 11-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   =>    |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
 
Theoremxmetxpbl 15055* The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point  C with radius  R. (Contributed by Jim Kingdon, 22-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  ( ph  ->  R  e.  RR* )   &    |-  ( ph  ->  C  e.  ( X  X.  Y ) )   =>    |-  ( ph  ->  ( C ( ball `  P ) R )  =  ( ( ( 1st `  C ) ( ball `  M ) R )  X.  (
 ( 2nd `  C )
 ( ball `  N ) R ) ) )
 
Theoremxmettxlem 15056* Lemma for xmettx 15057. (Contributed by Jim Kingdon, 15-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  J  =  (
 MetOpen `  M )   &    |-  K  =  ( MetOpen `  N )   &    |-  L  =  ( MetOpen `  P )   =>    |-  ( ph  ->  L  C_  ( J  tX  K ) )
 
Theoremxmettx 15057* The maximum metric (Chebyshev distance) on the product of two sets, expressed as a binary topological product. (Contributed by Jim Kingdon, 11-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  J  =  (
 MetOpen `  M )   &    |-  K  =  ( MetOpen `  N )   &    |-  L  =  ( MetOpen `  P )   =>    |-  ( ph  ->  L  =  ( J  tX  K )
 )
 
9.2.5  Continuity in metric spaces
 
Theoremmetcnp3 15058* Two ways to express that  F is continuous at  P for metric spaces. Proposition 14-4.2 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
 ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C )
 z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) ) )
 
Theoremmetcnp 15059* Two ways to say a mapping from metric  C to metric  D is continuous at point  P. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
 ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
 
Theoremmetcnp2 15060* Two ways to say a mapping from metric  C to metric  D is continuous at point  P. The distance arguments are swapped compared to metcnp 15059 (and Munkres' metcn 15061) for compatibility with df-lm 14737. Definition 1.3-3 of [Kreyszig] p. 20. (Contributed by NM, 4-Jun-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
 ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( w C P )  <  z  ->  (
 ( F `  w ) D ( F `  P ) )  < 
 y ) ) ) )
 
Theoremmetcn 15061* Two ways to say a mapping from metric  C to metric  D is continuous. Theorem 10.1 of [Munkres] p. 127. The second biconditional argument says that for every positive "epsilon"  y there is a positive "delta"  z such that a distance less than delta in  C maps to a distance less than epsilon in  D. (Contributed by NM, 15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X
 --> Y  /\  A. x  e.  X  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  <  z  ->  ( ( F `  x ) D ( F `  w ) )  <  y ) ) ) )
 
Theoremmetcnpi 15062* Epsilon-delta property of a continuous metric space function, with function arguments as in metcnp 15059. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) ) 
 /\  ( F  e.  ( ( J  CnP  K ) `  P ) 
 /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( P C y )  <  x  ->  ( ( F `  P ) D ( F `  y ) )  <  A ) )
 
Theoremmetcnpi2 15063* Epsilon-delta property of a continuous metric space function, with swapped distance function arguments as in metcnp2 15060. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) ) 
 /\  ( F  e.  ( ( J  CnP  K ) `  P ) 
 /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <  x  ->  ( ( F `  y ) D ( F `  P ) )  <  A ) )
 
Theoremmetcnpi3 15064* Epsilon-delta property of a metric space function continuous at  P. A variation of metcnpi2 15063 with non-strict ordering. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) ) 
 /\  ( F  e.  ( ( J  CnP  K ) `  P ) 
 /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <_  x  ->  ( ( F `  y ) D ( F `  P ) )  <_  A )
 )
 
Theoremtxmetcnp 15065* Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   &    |-  L  =  ( MetOpen `  E )   =>    |-  (
 ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) ) 
 /\  ( A  e.  X  /\  B  e.  Y ) )  ->  ( F  e.  ( ( ( J  tX  K )  CnP  L ) `  <. A ,  B >. )  <->  ( F :
 ( X  X.  Y )
 --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  <  w  /\  ( B D v )  <  w )  ->  ( ( A F B ) E ( u F v ) )  <  z ) ) ) )
 
Theoremtxmetcn 15066* Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   &    |-  L  =  ( MetOpen `  E )   =>    |-  (
 ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) ) 
 ->  ( F  e.  (
 ( J  tX  K )  Cn  L )  <->  ( F :
 ( X  X.  Y )
 --> Z  /\  A. x  e.  X  A. y  e.  Y  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  (
 ( ( x C u )  <  w  /\  ( y D v )  <  w ) 
 ->  ( ( x F y ) E ( u F v ) )  <  z ) ) ) )
 
Theoremmetcnpd 15067* Two ways to say a mapping from metric  C to metric  D is continuous at point  P. (Contributed by Jim Kingdon, 14-Jun-2023.)
 |-  ( ph  ->  J  =  ( MetOpen `  C )
 )   &    |-  ( ph  ->  K  =  ( MetOpen `  D )
 )   &    |-  ( ph  ->  C  e.  ( *Met `  X ) )   &    |-  ( ph  ->  D  e.  ( *Met `  Y ) )   &    |-  ( ph  ->  P  e.  X )   =>    |-  ( ph  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X
 --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
 
9.2.6  Topology on the reals
 
Theoremqtopbasss 15068* The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.)
 |-  S  C_  RR*   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  sup ( { x ,  y } ,  RR* ,  <  )  e.  S )   &    |-  ( ( x  e.  S  /\  y  e.  S )  -> inf ( { x ,  y } ,  RR* ,  <  )  e.  S )   =>    |-  ( (,) " ( S  X.  S ) )  e.  TopBases
 
Theoremqtopbas 15069 The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007.)
 |-  ( (,) " ( QQ  X.  QQ ) )  e.  TopBases
 
Theoremretopbas 15070 A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.)
 |- 
 ran  (,)  e.  TopBases
 
Theoremretop 15071 The standard topology on the reals. (Contributed by FL, 4-Jun-2007.)
 |-  ( topGen `  ran  (,) )  e.  Top
 
Theoremuniretop 15072 The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.)
 |- 
 RR  =  U. ( topGen `
  ran  (,) )
 
Theoremretopon 15073 The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  ( topGen `  ran  (,) )  e.  (TopOn `  RR )
 
Theoremretps 15074 The standard topological space on the reals. (Contributed by NM, 19-Oct-2012.)
 |-  K  =  { <. (
 Base `  ndx ) ,  RR >. ,  <. (TopSet `  ndx ) ,  ( topGen `  ran  (,) ) >. }   =>    |-  K  e.  TopSp
 
Theoremiooretopg 15075 Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) (Revised by Jim Kingdon, 23-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  e.  ( topGen `  ran  (,) ) )
 
Theoremcnmetdval 15076 Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  D  =  ( abs 
 o.  -  )   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A D B )  =  ( abs `  ( A  -  B ) ) )
 
Theoremcnmet 15077 The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.)
 |-  ( abs  o.  -  )  e.  ( Met `  CC )
 
Theoremcnxmet 15078 The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  ( abs  o.  -  )  e.  ( *Met `  CC )
 
Theoremcntoptopon 15079 The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  J  e.  (TopOn `  CC )
 
Theoremcntoptop 15080 The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  J  e.  Top
 
Theoremcnbl0 15081 Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
 |-  D  =  ( abs 
 o.  -  )   =>    |-  ( R  e.  RR* 
 ->  ( `' abs " (
 0 [,) R ) )  =  ( 0 (
 ball `  D ) R ) )
 
Theoremcnblcld 15082* Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
 |-  D  =  ( abs 
 o.  -  )   =>    |-  ( R  e.  RR* 
 ->  ( `' abs " (
 0 [,] R ) )  =  { x  e. 
 CC  |  ( 0 D x )  <_  R } )
 
Theoremcnfldms 15083 The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-fld  e.  MetSp
 
Theoremcnfldxms 15084 The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-fld  e.  *MetSp
 
Theoremcnfldtps 15085 The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-fld  e.  TopSp
 
Theoremcnfldtopn 15086 The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  J  =  ( MetOpen `  ( abs  o. 
 -  ) )
 
Theoremcnfldtopon 15087 The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  J  e.  (TopOn `  CC )
 
Theoremcnfldtop 15088 The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  J  e.  Top
 
Theoremunicntopcntop 15089 The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
 |- 
 CC  =  U. ( MetOpen `  ( abs  o.  -  ) )
 
Theoremunicntop 15090 The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |- 
 CC  =  U. ( TopOpen ` fld )
 
Theoremcnopncntop 15091 The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
 |- 
 CC  e.  ( MetOpen `  ( abs  o.  -  )
 )
 
Theoremcnopn 15092 The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |- 
 CC  e.  ( TopOpen ` fld )
 
Theoremreopnap 15093* The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.)
 |-  ( A  e.  RR  ->  { w  e.  RR  |  w #  A }  e.  ( topGen `  ran  (,) )
 )
 
Theoremremetdval 15094 Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A D B )  =  ( abs `  ( A  -  B ) ) )
 
Theoremremet 15095 The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  D  e.  ( Met `  RR )
 
Theoremrexmet 15096 The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  D  e.  ( *Met `  RR )
 
Theorembl2ioo 15097 A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A (
 ball `  D ) B )  =  ( ( A  -  B ) (,) ( A  +  B ) ) )
 
Theoremioo2bl 15098 An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A (,) B )  =  ( ( ( A  +  B )  /  2 ) (
 ball `  D ) ( ( B  -  A )  /  2 ) ) )
 
Theoremioo2blex 15099 An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A (,) B )  e.  ran  ( ball `  D ) )
 
Theoremblssioo 15100 The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |- 
 ran  ( ball `  D )  C_  ran  (,)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >