ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvcsbv Unicode version

Theorem cbvcsbv 3099
Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
cbvcsbv.1  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbvcsbv  |-  [_ A  /  x ]_ B  = 
[_ A  /  y ]_ C
Distinct variable groups:    x, y    y, B    x, C
Allowed substitution hints:    A( x, y)    B( x)    C( y)

Proof of Theorem cbvcsbv
StepHypRef Expression
1 nfcv 2348 . 2  |-  F/_ y B
2 nfcv 2348 . 2  |-  F/_ x C
3 cbvcsbv.1 . 2  |-  ( x  =  y  ->  B  =  C )
41, 2, 3cbvcsb 3098 1  |-  [_ A  /  x ]_ B  = 
[_ A  /  y ]_ C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   [_csb 3093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-sbc 2999  df-csb 3094
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator