ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvcsbv Unicode version

Theorem cbvcsbv 3130
Description: Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
cbvcsbv.1  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbvcsbv  |-  [_ A  /  x ]_ B  = 
[_ A  /  y ]_ C
Distinct variable groups:    x, y    y, B    x, C
Allowed substitution hints:    A( x, y)    B( x)    C( y)

Proof of Theorem cbvcsbv
StepHypRef Expression
1 nfcv 2372 . 2  |-  F/_ y B
2 nfcv 2372 . 2  |-  F/_ x C
3 cbvcsbv.1 . 2  |-  ( x  =  y  ->  B  =  C )
41, 2, 3cbvcsb 3129 1  |-  [_ A  /  x ]_ B  = 
[_ A  /  y ]_ C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   [_csb 3124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-sbc 3029  df-csb 3125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator