ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvcsb Unicode version

Theorem cbvcsb 3129
Description: Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on  A. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
cbvcsb.1  |-  F/_ y C
cbvcsb.2  |-  F/_ x D
cbvcsb.3  |-  ( x  =  y  ->  C  =  D )
Assertion
Ref Expression
cbvcsb  |-  [_ A  /  x ]_ C  = 
[_ A  /  y ]_ D

Proof of Theorem cbvcsb
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cbvcsb.1 . . . . 5  |-  F/_ y C
21nfcri 2366 . . . 4  |-  F/ y  z  e.  C
3 cbvcsb.2 . . . . 5  |-  F/_ x D
43nfcri 2366 . . . 4  |-  F/ x  z  e.  D
5 cbvcsb.3 . . . . 5  |-  ( x  =  y  ->  C  =  D )
65eleq2d 2299 . . . 4  |-  ( x  =  y  ->  (
z  e.  C  <->  z  e.  D ) )
72, 4, 6cbvsbc 3057 . . 3  |-  ( [. A  /  x ]. z  e.  C  <->  [. A  /  y ]. z  e.  D
)
87abbii 2345 . 2  |-  { z  |  [. A  /  x ]. z  e.  C }  =  { z  |  [. A  /  y ]. z  e.  D }
9 df-csb 3125 . 2  |-  [_ A  /  x ]_ C  =  { z  |  [. A  /  x ]. z  e.  C }
10 df-csb 3125 . 2  |-  [_ A  /  y ]_ D  =  { z  |  [. A  /  y ]. z  e.  D }
118, 9, 103eqtr4i 2260 1  |-  [_ A  /  x ]_ C  = 
[_ A  /  y ]_ D
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   {cab 2215   F/_wnfc 2359   [.wsbc 3028   [_csb 3124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-sbc 3029  df-csb 3125
This theorem is referenced by:  cbvcsbv  3130  cbvsum  11866
  Copyright terms: Public domain W3C validator