| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbeq1d | Unicode version | ||
| Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
| Ref | Expression |
|---|---|
| csbeq1d.1 |
|
| Ref | Expression |
|---|---|
| csbeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1d.1 |
. 2
| |
| 2 | csbeq1 3087 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 df-csb 3085 |
| This theorem is referenced by: csbidmg 3141 csbco3g 3143 fmptcof 5730 mpomptsx 6256 dmmpossx 6258 fmpox 6259 fmpoco 6275 xpf1o 6906 summodclem3 11547 summodclem2a 11548 summodc 11550 zsumdc 11551 fsum3 11554 sumsnf 11576 fsumcnv 11604 fisumcom2 11605 fsumshftm 11612 fisum0diag2 11614 prodmodclem3 11742 prodmodclem2a 11743 prodmodc 11745 zproddc 11746 fprodseq 11750 prodsnf 11759 fprodcnv 11792 fprodcom2fi 11793 pcmpt 12522 ctiunctlemu1st 12661 ctiunctlemu2nd 12662 ctiunctlemudc 12664 ctiunctlemfo 12666 prdsex 12950 imasex 12958 psrval 14230 fsumdvdsmul 15237 |
| Copyright terms: Public domain | W3C validator |