| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbeq1d | Unicode version | ||
| Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
| Ref | Expression |
|---|---|
| csbeq1d.1 |
|
| Ref | Expression |
|---|---|
| csbeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1d.1 |
. 2
| |
| 2 | csbeq1 3087 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 df-csb 3085 |
| This theorem is referenced by: csbidmg 3141 csbco3g 3143 fmptcof 5732 mpomptsx 6264 dmmpossx 6266 fmpox 6267 fmpoco 6283 xpf1o 6914 summodclem3 11564 summodclem2a 11565 summodc 11567 zsumdc 11568 fsum3 11571 sumsnf 11593 fsumcnv 11621 fisumcom2 11622 fsumshftm 11629 fisum0diag2 11631 prodmodclem3 11759 prodmodclem2a 11760 prodmodc 11762 zproddc 11763 fprodseq 11767 prodsnf 11776 fprodcnv 11809 fprodcom2fi 11810 pcmpt 12539 ctiunctlemu1st 12678 ctiunctlemu2nd 12679 ctiunctlemudc 12681 ctiunctlemfo 12683 prdsex 12973 imasex 13009 psrval 14298 fsumdvdsmul 15313 |
| Copyright terms: Public domain | W3C validator |