| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > csbeq1d | Unicode version | ||
| Description: Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) | 
| Ref | Expression | 
|---|---|
| csbeq1d.1 | 
 | 
| Ref | Expression | 
|---|---|
| csbeq1d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | csbeq1d.1 | 
. 2
 | |
| 2 | csbeq1 3087 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 df-csb 3085 | 
| This theorem is referenced by: csbidmg 3141 csbco3g 3143 fmptcof 5729 mpomptsx 6255 dmmpossx 6257 fmpox 6258 fmpoco 6274 xpf1o 6905 summodclem3 11545 summodclem2a 11546 summodc 11548 zsumdc 11549 fsum3 11552 sumsnf 11574 fsumcnv 11602 fisumcom2 11603 fsumshftm 11610 fisum0diag2 11612 prodmodclem3 11740 prodmodclem2a 11741 prodmodc 11743 zproddc 11744 fprodseq 11748 prodsnf 11757 fprodcnv 11790 fprodcom2fi 11791 pcmpt 12512 ctiunctlemu1st 12651 ctiunctlemu2nd 12652 ctiunctlemudc 12654 ctiunctlemfo 12656 prdsex 12940 imasex 12948 psrval 14220 fsumdvdsmul 15227 | 
| Copyright terms: Public domain | W3C validator |