ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-csb Unicode version

Definition df-csb 3094
Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2998, to prevent ambiguity. Theorem sbcel1g 3112 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3122 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
df-csb  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
Distinct variable groups:    y, A    y, B    x, y
Allowed substitution hints:    A( x)    B( x)

Detailed syntax breakdown of Definition df-csb
StepHypRef Expression
1 vx . . 3  setvar  x
2 cA . . 3  class  A
3 cB . . 3  class  B
41, 2, 3csb 3093 . 2  class  [_ A  /  x ]_ B
5 vy . . . . . 6  setvar  y
65cv 1372 . . . . 5  class  y
76, 3wcel 2176 . . . 4  wff  y  e.  B
87, 1, 2wsbc 2998 . . 3  wff  [. A  /  x ]. y  e.  B
98, 5cab 2191 . 2  class  { y  |  [. A  /  x ]. y  e.  B }
104, 9wceq 1373 1  wff  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
Colors of variables: wff set class
This definition is referenced by:  csb2  3095  csbeq1  3096  cbvcsbw  3097  cbvcsb  3098  csbid  3101  csbco  3103  csbcow  3104  csbtt  3105  sbcel12g  3108  sbceqg  3109  csbeq2  3117  csbeq2d  3118  csbvarg  3121  nfcsb1d  3124  nfcsbd  3129  nfcsbw  3130  csbie2g  3144  csbnestgf  3146  cbvralcsf  3156  cbvrexcsf  3157  cbvreucsf  3158  cbvrabcsf  3159  csbprc  3506  csbexga  4172  bdccsb  15796
  Copyright terms: Public domain W3C validator