| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-csb | Unicode version | ||
| Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3005, to prevent ambiguity. Theorem sbcel1g 3120 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3130 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| df-csb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx |
. . 3
| |
| 2 | cA |
. . 3
| |
| 3 | cB |
. . 3
| |
| 4 | 1, 2, 3 | csb 3101 |
. 2
|
| 5 | vy |
. . . . . 6
| |
| 6 | 5 | cv 1372 |
. . . . 5
|
| 7 | 6, 3 | wcel 2178 |
. . . 4
|
| 8 | 7, 1, 2 | wsbc 3005 |
. . 3
|
| 9 | 8, 5 | cab 2193 |
. 2
|
| 10 | 4, 9 | wceq 1373 |
1
|
| Colors of variables: wff set class |
| This definition is referenced by: csb2 3103 csbeq1 3104 cbvcsbw 3105 cbvcsb 3106 csbid 3109 csbco 3111 csbcow 3112 csbtt 3113 sbcel12g 3116 sbceqg 3117 csbeq2 3125 csbeq2d 3126 csbvarg 3129 nfcsb1d 3132 nfcsbd 3137 nfcsbw 3138 csbie2g 3152 csbnestgf 3154 cbvralcsf 3164 cbvrexcsf 3165 cbvreucsf 3166 cbvrabcsf 3167 csbprc 3514 csbexga 4188 bdccsb 15995 |
| Copyright terms: Public domain | W3C validator |