| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-csb | Unicode version | ||
| Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 2998, to prevent ambiguity. Theorem sbcel1g 3112 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3122 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| df-csb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx |
. . 3
| |
| 2 | cA |
. . 3
| |
| 3 | cB |
. . 3
| |
| 4 | 1, 2, 3 | csb 3093 |
. 2
|
| 5 | vy |
. . . . . 6
| |
| 6 | 5 | cv 1372 |
. . . . 5
|
| 7 | 6, 3 | wcel 2176 |
. . . 4
|
| 8 | 7, 1, 2 | wsbc 2998 |
. . 3
|
| 9 | 8, 5 | cab 2191 |
. 2
|
| 10 | 4, 9 | wceq 1373 |
1
|
| Colors of variables: wff set class |
| This definition is referenced by: csb2 3095 csbeq1 3096 cbvcsbw 3097 cbvcsb 3098 csbid 3101 csbco 3103 csbcow 3104 csbtt 3105 sbcel12g 3108 sbceqg 3109 csbeq2 3117 csbeq2d 3118 csbvarg 3121 nfcsb1d 3124 nfcsbd 3129 nfcsbw 3130 csbie2g 3144 csbnestgf 3146 cbvralcsf 3156 cbvrexcsf 3157 cbvreucsf 3158 cbvrabcsf 3159 csbprc 3506 csbexga 4172 bdccsb 15796 |
| Copyright terms: Public domain | W3C validator |