ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbviinv Unicode version

Theorem cbviinv 3913
Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.)
Hypothesis
Ref Expression
cbviunv.1  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbviinv  |-  |^|_ x  e.  A  B  =  |^|_ y  e.  A  C
Distinct variable groups:    x, A    y, A    y, B    x, C
Allowed substitution hints:    B( x)    C( y)

Proof of Theorem cbviinv
StepHypRef Expression
1 nfcv 2312 . 2  |-  F/_ y B
2 nfcv 2312 . 2  |-  F/_ x C
3 cbviunv.1 . 2  |-  ( x  =  y  ->  B  =  C )
41, 2, 3cbviin 3911 1  |-  |^|_ x  e.  A  B  =  |^|_ y  e.  A  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   |^|_ciin 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-iin 3876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator