ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunss Unicode version

Theorem iunss 3957
Description: Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunss  |-  ( U_ x  e.  A  B  C_  C  <->  A. x  e.  A  B  C_  C )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem iunss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iun 3918 . . 3  |-  U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
21sseq1i 3209 . 2  |-  ( U_ x  e.  A  B  C_  C  <->  { y  |  E. x  e.  A  y  e.  B }  C_  C
)
3 abss 3252 . 2  |-  ( { y  |  E. x  e.  A  y  e.  B }  C_  C  <->  A. y
( E. x  e.  A  y  e.  B  ->  y  e.  C ) )
4 dfss2 3172 . . . 4  |-  ( B 
C_  C  <->  A. y
( y  e.  B  ->  y  e.  C ) )
54ralbii 2503 . . 3  |-  ( A. x  e.  A  B  C_  C  <->  A. x  e.  A  A. y ( y  e.  B  ->  y  e.  C ) )
6 ralcom4 2785 . . 3  |-  ( A. x  e.  A  A. y ( y  e.  B  ->  y  e.  C )  <->  A. y A. x  e.  A  ( y  e.  B  ->  y  e.  C ) )
7 r19.23v 2606 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  -> 
y  e.  C )  <-> 
( E. x  e.  A  y  e.  B  ->  y  e.  C ) )
87albii 1484 . . 3  |-  ( A. y A. x  e.  A  ( y  e.  B  ->  y  e.  C )  <->  A. y ( E. x  e.  A  y  e.  B  ->  y  e.  C
) )
95, 6, 83bitrri 207 . 2  |-  ( A. y ( E. x  e.  A  y  e.  B  ->  y  e.  C
)  <->  A. x  e.  A  B  C_  C )
102, 3, 93bitri 206 1  |-  ( U_ x  e.  A  B  C_  C  <->  A. x  e.  A  B  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476    C_ wss 3157   U_ciun 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-iun 3918
This theorem is referenced by:  iunss2  3961  iunssd  3962  djussxp  4811  fun11iun  5525  ennnfonelemf1  12635  imasaddfnlemg  12957  tgidm  14310
  Copyright terms: Public domain W3C validator