Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iunss | Unicode version |
Description: Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iunss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 3868 | . . 3 | |
2 | 1 | sseq1i 3168 | . 2 |
3 | abss 3211 | . 2 | |
4 | dfss2 3131 | . . . 4 | |
5 | 4 | ralbii 2472 | . . 3 |
6 | ralcom4 2748 | . . 3 | |
7 | r19.23v 2575 | . . . 4 | |
8 | 7 | albii 1458 | . . 3 |
9 | 5, 6, 8 | 3bitrri 206 | . 2 |
10 | 2, 3, 9 | 3bitri 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 wcel 2136 cab 2151 wral 2444 wrex 2445 wss 3116 ciun 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-iun 3868 |
This theorem is referenced by: iunss2 3911 djussxp 4749 fun11iun 5453 ennnfonelemf1 12351 tgidm 12724 |
Copyright terms: Public domain | W3C validator |